cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A318075 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 10, 10, 8, 16, 20, 18, 20, 16, 32, 42, 41, 41, 42, 32, 64, 89, 81, 73, 81, 89, 64, 128, 190, 179, 149, 149, 179, 190, 128, 256, 407, 404, 372, 316, 372, 404, 407, 256, 512, 873, 893, 861, 854, 854, 861, 893, 873, 512, 1024, 1874, 2000, 2016, 2195
Offset: 1

Views

Author

R. H. Hardin, Aug 15 2018

Keywords

Comments

Table starts
...1...2....4....8....16.....32.....64.....128......256.......512.......1024
...2...6...10...20....42.....89....190.....407......873......1874.......4024
...4..10...18...41....81....179....404.....893.....2000......4516......10125
...8..20...41...73...149....372....861....2016.....4901.....11698......27986
..16..42...81..149...316....854...2195....5752....15565.....41364.....110930
..32..89..179..372...854...3029...9966...31057...102906....339938....1115341
..64.190..404..861..2195...9966..46884..184156...819263...3703730...15865269
.128.407..893.2016..5752..31057.184156..935951..5311510..30435406..167286074
.256.873.2000.4901.15565.102906.819263.5311510.38183961.285095330.2029620744

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..0..0..1. .0..0..0..0. .0..0..1..1. .0..1..1..0
..1..1..0..1. .0..0..1..0. .0..1..1..0. .0..0..1..1. .1..1..0..0
..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .1..0..0..0
..1..1..1..1. .0..1..0..0. .0..0..0..1. .0..0..1..1. .0..0..0..0
..1..1..1..0. .1..0..0..1. .0..0..1..1. .0..0..1..1. .1..1..1..1
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A317759.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-4) for n>6
k=3: a(n) = 2*a(n-1) +a(n-2) +a(n-3) -3*a(n-4) -6*a(n-5) +6*a(n-6) for n>10
k=4: [order 18] for n>21
k=5: [order 29] for n>33
k=6: [order 56] for n>61

A318343 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.

Original entry on oeis.org

1, 2, 2, 4, 6, 4, 8, 10, 10, 8, 16, 20, 20, 20, 16, 32, 42, 36, 36, 42, 32, 64, 89, 76, 67, 76, 89, 64, 128, 190, 160, 148, 148, 160, 190, 128, 256, 407, 344, 343, 393, 343, 344, 407, 256, 512, 873, 748, 817, 1115, 1115, 817, 748, 873, 512, 1024, 1874, 1624, 1975, 3321
Offset: 1

Views

Author

R. H. Hardin, Aug 24 2018

Keywords

Comments

Table starts
...1...2....4....8....16.....32......64......128.......256........512
...2...6...10...20....42.....89.....190......407.......873.......1874
...4..10...20...36....76....160.....344......748......1624.......3544
...8..20...36...67...148....343.....817.....1975......4788......11644
..16..42...76..148...393...1115....3321....10111.....30943......95244
..32..89..160..343..1115...4133...16267....66070....270320....1112195
..64.190..344..817..3321..16267...86487...476348...2647555...14797928
.128.407..748.1975.10111..66070..476348..3590263..27322989..209259065
.256.873.1624.4788.30943.270320.2647555.27322989.285034170.2994059337

Examples

			Some solutions for n=5 k=4
..0..1..1..0. .0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..0
..1..1..0..0. .1..1..1..1. .0..1..0..0. .0..0..0..0. .1..1..1..1
..1..0..0..1. .1..1..1..0. .0..0..1..0. .1..1..1..1. .1..1..1..1
..0..0..1..1. .1..1..0..0. .0..0..0..0. .1..1..1..0. .1..1..1..0
..0..1..1..0. .1..0..0..1. .0..0..0..1. .1..1..0..0. .1..1..0..0
		

Crossrefs

Column 1 is A000079(n-1).
Column 2 is A317759.

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-4) for n>6
k=3: a(n) = 2*a(n-1) +2*a(n-2) -3*a(n-3) -2*a(n-4) +2*a(n-5) for n>6
k=4: [order 8] for n>9
k=5: [order 15] for n>18
k=6: [order 23] for n>27
k=7: [order 36] for n>41
Showing 1-2 of 2 results.