A317764 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1 or 2 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 4, 6, 4, 8, 10, 10, 8, 16, 20, 16, 20, 16, 32, 42, 28, 28, 42, 32, 64, 89, 52, 43, 52, 89, 64, 128, 190, 100, 72, 72, 100, 190, 128, 256, 407, 196, 127, 109, 127, 196, 407, 256, 512, 873, 388, 232, 177, 177, 232, 388, 873, 512, 1024, 1874, 772, 432, 302, 266, 302
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1. .0..1..1..0 ..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .1..1..0..0 ..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..1..1..1. .1..0..0..0 ..1..1..1..1. .0..0..0..0. .0..0..0..0. .1..1..1..1. .0..0..0..0 ..0..0..0..0. .1..1..1..1. .0..0..0..1. .0..0..0..0. .0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1300
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-4) for n>6
k=3: a(n) = 3*a(n-1) -2*a(n-2) for n>3
k=4: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) +a(n-5) for n>6
k=5: a(n) = 2*a(n-1) -a(n-4) for n>6
k=6: a(n) = 2*a(n-1) +a(n-2) -2*a(n-3) -a(n-4) +a(n-7) for n>10
k=7: a(n) = 3*a(n-1) -2*a(n-2) -a(n-4) +a(n-5) -a(n-6) +a(n-7) for n>11
Comments