cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317765 Number of distinct subexpressions of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.

This page as a plain text file.
%I A317765 #18 Sep 11 2018 21:16:23
%S A317765 1,2,3,2,4,3,5,3,3,4,6,4,4,5,7,2,5,5,6,8,3,6,6,7,4,9,3,4,7,7,8,4,5,10,
%T A317765 4,3,5,8,8,9,5,6,11,5,4,6,9,9,5,10,6,7,12,6,5,7,10,10,6,11,7,8,13,3,7,
%U A317765 6,8,11,11,7,12,8,9,14,4,8,7,9,12,12,3,8
%N A317765 Number of distinct subexpressions of the free pure symmetric multifunction (with empty expressions allowed) with e-number n.
%C A317765 If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
%e A317765 The a(12) = 4 subexpressions of o[o[]][] are {o, o[], o[o[]], o[o[]][]}.
%t A317765 nn=1000;
%t A317765 radQ[n_]:=If[n===1,False,GCD@@FactorInteger[n][[All,2]]===1];
%t A317765 rad[n_]:=rad[n]=If[n===0,1,NestWhile[#+1&,rad[n-1]+1,Not[radQ[#]]&]];
%t A317765 Clear[radPi];Set@@@Array[radPi[rad[#]]==#&,nn];
%t A317765 exp[n_]:=If[n===1,"o",With[{g=GCD@@FactorInteger[n][[All,2]]},Apply[exp[radPi[Power[n,1/g]]],exp/@Flatten[Cases[FactorInteger[g],{p_?PrimeQ,k_}:>ConstantArray[PrimePi[p],k]]]]]];
%t A317765 Table[Length[Union[Cases[exp[n],_,{0,Infinity},Heads->True]]],{n,100}]
%Y A317765 Cf. A007916, A052409, A052410, A277576, A277996, A300626, A316112, A317056, A317658, A317713, A317994.
%K A317765 nonn
%O A317765 1,2
%A A317765 _Gus Wiseman_, Aug 18 2018