cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317775 Number of strict multiset partitions of strongly normal multisets of size n, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.

This page as a plain text file.
%I A317775 #9 Dec 30 2020 17:33:27
%S A317775 1,3,10,36,136,596,2656,13187,68226,381572,2233091,13940407,90981030,
%T A317775 626911429,4509031955,33987610040,266668955183,2180991690286,
%U A317775 18512572760155,163103174973092,1487228204311039,14027782824491946,136585814043190619,1371822048393658001,14190528438090988629
%N A317775 Number of strict multiset partitions of strongly normal multisets of size n, where a multiset is strongly normal if it spans an initial interval of positive integers with weakly decreasing multiplicities.
%H A317775 Andrew Howroyd, <a href="/A317775/b317775.txt">Table of n, a(n) for n = 1..50</a>
%e A317775 The a(3) = 10 strict multiset partitions:
%e A317775   {{1,1,1}}, {{1},{1,1}},
%e A317775   {{1,1,2}}, {{1},{1,2}}, {{2},{1,1}},
%e A317775   {{1,2,3}}, {{1},{2,3}}, {{2},{1,3}}, {{3},{1,2}}, {{1},{2},{3}}.
%t A317775 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A317775 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A317775 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A317775 Table[Length[Select[Join@@mps/@strnorm[n],UnsameQ@@#&]],{n,6}]
%o A317775 (PARI)
%o A317775 EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
%o A317775 D(p, n)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); my(u=EulerT(v)); Vec(1/prod(k=1, n, 1 - u[k]*x^k + O(x*x^n))-1,-n)/prod(i=1, #v, i^v[i]*v[i]!)}
%o A317775 seq(n)={my(s); for(k=1, n, forpart(p=k, s+=(-1)^(k+#p)*D(p,n))); s[n]+=1; s/2} \\ _Andrew Howroyd_, Dec 30 2020
%Y A317775 Cf. A001055, A007716, A045778, A281116, A317449, A317584, A317654, A317755, A317757, A317776.
%K A317775 nonn
%O A317775 1,2
%A A317775 _Gus Wiseman_, Aug 06 2018
%E A317775 Terms a(10) and beyond from _Andrew Howroyd_, Dec 30 2020