This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317778 #19 Feb 09 2019 11:09:17 %S A317778 1,2,3,4,5,6,13,22,39,72,131,229,386,641,896,1164,1419,1855,2831,3545, %T A317778 5036,5750,8034,10022,12227,14377,17455,19951,24701,27197,36455,42303, %U A317778 49751,57232,65684,83879,94391,110073,124015,137442,156835,175130,209215,229396,242692 %N A317778 Starting with 1,2,3,4,5,6: a(n) is the next smallest number greater than a(n-1) such that a[i] + a[j] + a[k] != a[x] + a[y] + a[z] for 1 <= i,j,k,x,y,z <= n all distinct. %C A317778 a(n) <= a(n-1) + a(n-2) + a(n-3) - 2. - _Charlie Neder_, Feb 09 2019 %H A317778 Charlie Neder, <a href="/A317778/b317778.txt">Table of n, a(n) for n = 1..70</a> %e A317778 After 1,2,3,4,5,6: 7 cannot be the next term because 1+3+7 = 2+4+5. %o A317778 (Python) %o A317778 def u(series): %o A317778 for i in range(0, len(series)): %o A317778 for j in range(i+1, len(series)): %o A317778 for k in range(j+1, len(series)): %o A317778 for l in range(0, len(series)): %o A317778 for m in range(l+1, len(series)): %o A317778 for n in range(m+1, len(series)): %o A317778 if len(set([i,j,k,l,m,n]))==6: %o A317778 if series[i]+series[j]+series[k]==series[l]+series[m]+series[n]: %o A317778 return False %o A317778 return True %o A317778 def a(series, n): %o A317778 a = [] %o A317778 for i in range(0, len(series)): %o A317778 a.append(series[i]) %o A317778 a.append(n) %o A317778 return a %o A317778 series = [1, 2, 3,4,5,6] %o A317778 for i in range(7, 1000): %o A317778 print(i) %o A317778 nseries = a(series, i) %o A317778 if u(nseries): %o A317778 series.append(i) %o A317778 print(series) %o A317778 print(series) %Y A317778 Cf. A011185. %K A317778 nonn %O A317778 1,2 %A A317778 _Ben Paul Thurston_, Aug 06 2018 %E A317778 a(24)-a(45) from _Charlie Neder_, Feb 09 2019