This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317783 #27 Apr 30 2022 07:58:07 %S A317783 1,1,1,3,7,13,23,41,75,139,257,473,869,1597,2937,5403,9939,18281, %T A317783 33623,61841,113743,209207,384793,707745,1301745,2394281,4403769, %U A317783 8099795,14897847,27401413,50399055,92698313,170498779,313596147,576793241,1060888169,1951277557 %N A317783 Number of equivalence classes of binary words of length n for the set of subwords {010, 101}. %C A317783 Two binary words of the same length are equivalent with respect to a given subword set if they have equal sets of occurrences for each single subword. %C A317783 All terms are odd. %H A317783 Alois P. Heinz, <a href="/A317783/b317783.txt">Table of n, a(n) for n = 0..2000</a> %H A317783 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,1,0,1). %F A317783 G.f.: (-x^4-x^3+x-1)/(x^5+x^3-x^2+2*x-1). %F A317783 a(n) = 2*a(n-1) -a(n-2) +a(n-3) +a(n-5) for n >= 5. %e A317783 a(6) = 23: [|], [|0], [0|], [|1], [|2], [|3], [1|], [2|], [3|], [|03], [03|], [1|0], [0|1], [2|1], [1|2], [3|2], [2|3], [02|1], [1|02], [13|2], [2|13], [13|02], [02|13]. Here [13|2] describes the class whose members have occurrences of 010 at positions 1 and 3 and an occurrence of 101 at position 2 and no other occurrences of both subwords: 001010. [|] describes the class that avoids both subwords and has 26 members for n=6, in general 2*A000045(n+1) (for n>0). %p A317783 a:= n-> (<<0|1|0|0|0>, <0|0|1|0|0>, <0|0|0|1|0>, %p A317783 <0|0|0|0|1>, <1|0|1|-1|2>>^n.<<1, 1, 1, 3, 7>>)[1$2]: %p A317783 seq(a(n), n=0..45); %p A317783 # second Maple program: %p A317783 a:= proc(n) option remember; `if`(n<5, [1$3, 3, 7][n+1], %p A317783 2*a(n-1) -a(n-2) +a(n-3) +a(n-5)) %p A317783 end: %p A317783 seq(a(n), n=0..45); %t A317783 LinearRecurrence[{2, -1, 1, 0, 1}, {1, 1, 1, 3, 7}, 40] (* _Jean-François Alcover_, Apr 30 2022 *) %Y A317783 Cf. A000045, A128588, A164146, A303696, A317669, A317779. %K A317783 nonn,easy %O A317783 0,4 %A A317783 _Alois P. Heinz_, Aug 06 2018