This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317785 #9 Aug 08 2018 07:53:16 %S A317785 1,1,1,1,2,2,4,4,7,8,12,14,21,24,34,42,55,67,91,109,144,177,228,281, %T A317785 366,448,579,720,916,1142 %N A317785 Number of locally connected rooted trees with n nodes. %C A317785 An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph. %H A317785 Gus Wiseman, <a href="/A317785/a317785.png">All 42 locally connected rooted trees with 16 nodes.</a> %e A317785 The a(11) = 12 locally connected rooted trees: %e A317785 ((((((((((o)))))))))) %e A317785 ((((((((o)(o)))))))) %e A317785 (((((((o))((o))))))) %e A317785 ((((((o)))(((o)))))) %e A317785 (((((o))))((((o))))) %e A317785 ((((((o)(o)(o)))))) %e A317785 (((((o))((o)(o))))) %e A317785 ((((o))((o))((o)))) %e A317785 ((((o)(o)(o)(o)))) %e A317785 (((o))((o)(o)(o))) %e A317785 (((o)(o))((o)(o))) %e A317785 ((o)(o)(o)(o)(o)) %t A317785 multijoin[mss__]:=Join@@Table[Table[x, {Max[Count[#, x]&/@{mss}]}], {x, Union[mss]}]; %t A317785 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Union[Append[Delete[s,List/@c[[1]]],multijoin@@s[[c[[1]]]]]]]]]; %t A317785 rurt[n_]:=If[n==1,{{}},Join@@Table[Select[Union[Sort/@Tuples[rurt/@ptn]],Or[Length[#]==1,Length[csm[#]]==1]&],{ptn,IntegerPartitions[n-1]}]]; %t A317785 Table[Length[rurt[n]],{n,10}] %Y A317785 Cf. A000081, A276625, A286518, A286520, A301700, A304714, A316473, A316475, A317077, A317078, A317708, A317787. %K A317785 nonn,more %O A317785 1,5 %A A317785 _Gus Wiseman_, Aug 06 2018