This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317786 #8 Aug 08 2018 07:53:25 %S A317786 1,2,3,5,9,11,23,25,27,31,81,83,97,103,115,121,125,127,243,419,431, %T A317786 509,515,529,563,575,625,631,661,691,709,729,961,1067,1331,1543,2095, %U A317786 2187,2369,2575,2645,2875,2897,3001,3125,3637,3691,3803,4091,4201,4637,4663 %N A317786 Matula-Goebel numbers of locally connected rooted trees. %C A317786 An unlabeled rooted tree is locally connected if the branches directly under any given node are connected as a hypergraph. %e A317786 The sequence of locally connected trees together with their Matula-Goebel numbers begins: %e A317786 1: o %e A317786 2: (o) %e A317786 3: ((o)) %e A317786 5: (((o))) %e A317786 9: ((o)(o)) %e A317786 11: ((((o)))) %e A317786 23: (((o)(o))) %e A317786 25: (((o))((o))) %e A317786 27: ((o)(o)(o)) %e A317786 31: (((((o))))) %e A317786 81: ((o)(o)(o)(o)) %e A317786 83: ((((o)(o)))) %e A317786 97: ((((o))((o)))) %t A317786 multijoin[mss__]:=Join@@Table[Table[x,{Max[Count[#,x]&/@{mss}]}],{x,Union[mss]}]; %t A317786 csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Union[Append[Delete[s, List/@c[[1]]], multijoin@@s[[c[[1]]]]]]]]]; %t A317786 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A317786 rupQ[n_]:=Or[n==1,If[PrimeQ[n],rupQ[PrimePi[n]],And[Length[csm[primeMS/@primeMS[n]]]==1,And@@rupQ/@PrimePi/@FactorInteger[n][[All,1]]]]]; %t A317786 Select[Range[1000],rupQ[#]&] %Y A317786 A subset of A184155. %Y A317786 Cf. A000081, A276625, A286518, A286520, A304714, A316470, A316495, A316502, A317077, A317078, A317785. %K A317786 nonn %O A317786 1,2 %A A317786 _Gus Wiseman_, Aug 07 2018