This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317788 #11 Aug 19 2018 02:47:26 %S A317788 2,1,3,6,4,8,12,9,5,18,17,10,7,19,14,16,11,20,13,24,22,15,32,36,34,25, %T A317788 23,37,27,21,26,64,69,40,43,29,30,35,39,44,28,42,53,129,72,38,31,81, %U A317788 45,50,46,47,49,74,41,54,55,51,52,57,58,128,68,70,140,77,60 %N A317788 Lexicographically earliest infinite sequence of distinct positive terms such that for any n > 1, the binary representation of a(n) appears as a substring in the binary representation of Sum_{k=1..n-1} a(k). %C A317788 The sequence must start with a(1) = 2 in order to be infinite, and for any n > 1, a(n) <= Sum_{k=1..n-1} a(k). %C A317788 This sequence has similarities with A160855. %H A317788 Rémy Sigrist, <a href="/A317788/b317788.txt">Table of n, a(n) for n = 1..10000</a> %H A317788 Rémy Sigrist, <a href="/A317788/a317788.png">Density plot of the first 100000000 terms</a> %H A317788 Rémy Sigrist, <a href="/A317788/a317788.txt">C++ program for A317788</a> %e A317788 The first terms, alongside the binary representations of a(n) and of Sum_{k=1..n-1} a(k), are: %e A317788 n a(n) bin(a(n)) bin(Sum_{k=1..n-1} a(k)) %e A317788 -- ---- --------- ------------------------ %e A317788 1 2 10 0 %e A317788 2 1 1 10 %e A317788 3 3 11 11 %e A317788 4 6 110 110 %e A317788 5 4 100 1100 %e A317788 6 8 1000 10000 %e A317788 7 12 1100 11000 %e A317788 8 9 1001 100100 %e A317788 9 5 101 101101 %e A317788 10 18 10010 110010 %o A317788 (C++) See Links section. %Y A317788 Cf. A160855. %K A317788 nonn,base %O A317788 1,1 %A A317788 _Rémy Sigrist_, Aug 07 2018