cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317799 G.f.: Sum_{n>=0} (4*(1+x)^n - 1)^n / 4^(n+1).

This page as a plain text file.
%I A317799 #3 Aug 14 2018 00:35:39
%S A317799 1,28,2644,418108,92624756,26388012380,9189259388052,3782063138596476,
%T A317799 1796136011427955636,966755321167565129372,581573928178258915024596,
%U A317799 386690499153558305585430460,281600848152507182372274325492,222904650325844057584524049181660,190559248618061561787517993382005012
%N A317799 G.f.: Sum_{n>=0} (4*(1+x)^n - 1)^n / 4^(n+1).
%F A317799 G.f. satisfies:
%F A317799 (1) Sum_{n>=0} 4^n * (1+x)^(n^2) / (4 + (1+x)^n)^(n+1).
%F A317799 (2) Sum_{n>=0} ((1+x)^n - 1/4)^n / 4.
%e A317799 G.f.: A(x) = 1 + 28*x + 2644*x^2 + 418108*x^3 + 92624756*x^4 + 26388012380*x^5 + 9189259388052*x^6 + 3782063138596476*x^7 + 1796136011427955636*x^8 + ...
%e A317799 such that
%e A317799 A(x) = 1/4  +  (4*(1+x) - 1)/4^2  +  (4*(1+x)^2 - 1)^3/4^3  +  (4*(1+x)^3 - 1)^4/4^4  +  (4*(1+x)^4 - 1)^4/4^5  +  (4*(1+x)^5 - 1)^5/4^6  + ...
%e A317799 Also,
%e A317799 A(x) = 1/5  +  4*(1+x)/(4 + (1+x))^2  +  4^2*(1+x)^4/(4 + (1+x)^2)^4  +  4^3*(1+x)^9/(4 + (1+x)^3)^4  +  4^4*(1+x)^16/(4 + (1+x)^4)^5  +  4^5*(1+x)^25/(4 + (1+x)^5)^6  +  4^6*(1+x)^36/(4 + (1+x)^6)^7  + ...
%Y A317799 Cf. A122400, A301463, A317798, A301583.
%K A317799 nonn
%O A317799 0,2
%A A317799 _Paul D. Hanna_, Aug 14 2018