This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317801 #8 Aug 13 2018 03:56:39 %S A317801 1,2,5,36,465,8504,196900,5448960,174282930,6304990774,254130115519, %T A317801 11285072891720,547300883009420,28782595694322682,1631647871872693931, %U A317801 99196878522983084624,6438935162966517263673,444501575692314862825620,32520919561355194120182078,2513781290973908970634293260,204713526722520414595009119193 %N A317801 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n) )^n = 1. %H A317801 Paul D. Hanna, <a href="/A317801/b317801.txt">Table of n, a(n) for n = 0..200</a> %F A317801 G.f. A(x) satisfies: %F A317801 (1) 1 = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n) )^n. %F A317801 (2) A(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n+2) )^n. %F A317801 (3) 1 = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n+2) )^n / (1+x)^(2*n+2). %F A317801 (4) Let B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n+1) )^n , %F A317801 then B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n+2) )^n / (1+x)^(n+1). %F A317801 a(n) ~ 2^(n - log(2)/4 - 5/2) * n^n / (sqrt(1-log(2)) * exp(n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Aug 13 2018 %e A317801 G.f.: A(x) = 1 + 2*x + 5*x^2 + 36*x^3 + 465*x^4 + 8504*x^5 + 196900*x^6 + 5448960*x^7 + 174282930*x^8 + 6304990774*x^9 + 254130115519*x^10 + ... %e A317801 such that %e A317801 1 = 1 + (1/A(x) - 1/(1+x)^2) + (1/A(x) - 1/(1+x)^4)^2 + (1/A(x) - 1/(1+x)^6)^3 + (1/A(x) - 1/(1+x)^8)^4 + (1/A(x) - 1/(1+x)^10)^5 + (1/A(x) - 1/(1+x)^12)^6 + (1/A(x) - 1/(1+x)^14)^7 + (1/A(x) - 1/(1+x)^16)^8 + ... %e A317801 Also, %e A317801 A(x) = 1 + (1/A(x) - 1/(1+x)^4) + (1/A(x) - 1/(1+x)^6)^2 + (1/A(x) - 1/(1+x)^8)^3 + (1/A(x) - 1/(1+x)^10)^4 + (1/A(x) - 1/(1+x)^12)^5 + (1/A(x) - 1/(1+x)^14)^6 + (1/A(x) - 1/(1+x)^16)^7 + (1/A(x) - 1/(1+x)^18)^8 + ... %e A317801 RELATED SERIES. %e A317801 The series B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(2*n+1) )^n begins %e A317801 B(x) = 1 + x + 2*x^2 + 15*x^3 + 193*x^4 + 3523*x^5 + 81497*x^6 + 2254695*x^7 + 72114516*x^8 + 2609080565*x^9 + 105173092838*x^10 + ... %e A317801 restated, %e A317801 B(x) = 1 + (1/A(x) - 1/(1+x)^3) + (1/A(x) - 1/(1+x)^5)^2 + (1/A(x) - 1/(1+x)^7)^3 + (1/A(x) - 1/(1+x)^9)^4 + (1/A(x) - 1/(1+x)^11)^5 + (1/A(x) - 1/(1+x)^13)^6 + (1/A(x) - 1/(1+x)^15)^7 + (1/A(x) - 1/(1+x)^17)^8 + ... %e A317801 which can also be written %e A317801 B(x) = 1/(1+x) + (1/A(x) - 1/(1+x)^4)/(1+x)^2 + (1/A(x) - 1/(1+x)^6)^2/(1+x)^3 + (1/A(x) - 1/(1+x)^8)^3/(1+x)^4 + (1/A(x) - 1/(1+x)^10)^4/(1+x)^5 + (1/A(x) - 1/(1+x)^12)^5/(1+x)^6 + (1/A(x) - 1/(1+x)^14)^6/(1+x)^7 + (1/A(x) - 1/(1+x)^16)^7/(1+x)^8 + (1/A(x) - 1/(1+x)^18)^8/(1+x)^9 + ... %e A317801 Compare the above to %e A317801 1 = 1/(1+x)^2 + (1/A(x) - 1/(1+x)^4)/(1+x)^4 + (1/A(x) - 1/(1+x)^6)^2/(1+x)^6 + (1/A(x) - 1/(1+x)^8)^3/(1+x)^8 + (1/A(x) - 1/(1+x)^10)^4/(1+x)^10 + (1/A(x) - 1/(1+x)^12)^5/(1+x)^12 + (1/A(x) - 1/(1+x)^14)^6/(1+x)^14 + (1/A(x) - 1/(1+x)^16)^7/(1+x)^16 + (1/A(x) - 1/(1+x)^18)^8/(1+x)^18 + ... %o A317801 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - 1/(1+x +x*O(x^#A))^(2*m+2) )^m ) )[#A]/2 ); A[n+1]} %o A317801 for(n=0, 25, print1(a(n), ", ")) %Y A317801 Cf. A317339, A317802, A317803, A317666. %K A317801 nonn %O A317801 0,2 %A A317801 _Paul D. Hanna_, Aug 12 2018