cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317802 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n) )^n = 1.

This page as a plain text file.
%I A317802 #9 Aug 13 2018 03:57:31
%S A317802 1,3,12,127,2445,66939,2324026,96491718,4631150520,251413638241,
%T A317802 15206137508067,1013223645173301,73729926406815893,
%U A317802 5817609547850902791,494790115210979151063,45129281235546080750387,4394695321061357601501585,455127430187799524613334185,49952816657399856543050669882,5792366218971732073257841216098,707622192835283858272032714820854
%N A317802 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n) )^n  =  1.
%H A317802 Paul D. Hanna, <a href="/A317802/b317802.txt">Table of n, a(n) for n = 0..200</a>
%F A317802 G.f. A(x) satisfies:
%F A317802 (1) 1 = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n) )^n.
%F A317802 (2) A(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+3) )^n.
%F A317802 (3) 1 = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+3) )^n / (1+x)^(3*n+3).
%F A317802 (4) Let B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+1) )^n , then
%F A317802 B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+3) )^n / (1+x)^(2*n+2).
%F A317802 (5) Let C(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+2) )^n , then
%F A317802 C(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+3) )^n / (1+x)^(n+1).
%F A317802 a(n) ~ 2^(-log(2)/6 - 5/2) * 3^n * n^n / (sqrt(1-log(2)) * exp(n) * (log(2))^(2*n+1)). - _Vaclav Kotesovec_, Aug 13 2018
%e A317802 G.f.: A(x) = 1 + 3*x + 12*x^2 + 127*x^3 + 2445*x^4 + 66939*x^5 + 2324026*x^6 + 96491718*x^7 + 4631150520*x^8 + 251413638241*x^9 + 15206137508067*x^10 + ...
%e A317802 such that
%e A317802 1 = 1  +  (1/A(x) - 1/(1+x)^3)  +  (1/A(x) - 1/(1+x)^6)^2  +  (1/A(x) - 1/(1+x)^9)^3  +  (1/A(x) - 1/(1+x)^12)^4  +  (1/A(x) - 1/(1+x)^15)^5  +  (1/A(x) - 1/(1+x)^18)^6  +  (1/A(x) - 1/(1+x)^21)^7  +  (1/A(x) - 1/(1+x)^24)^8  + ...
%e A317802 Also,
%e A317802 A(x) = 1  +  (1/A(x) - 1/(1+x)^6)  +  (1/A(x) - 1/(1+x)^9)^2  +  (1/A(x) - 1/(1+x)^12)^3  +  (1/A(x) - 1/(1+x)^15)^4  +  (1/A(x) - 1/(1+x)^18)^5  +  (1/A(x) - 1/(1+x)^21)^6  +  (1/A(x) - 1/(1+x)^24)^7  +  (1/A(x) - 1/(1+x)^27)^8  + ...
%e A317802 RELATED SERIES.
%e A317802 (1) The series B(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+1) )^n begins
%e A317802 B(x) = 1 + x + 3*x^2 + 33*x^3 + 634*x^4 + 17326*x^5 + 601161*x^6 + 24961740*x^7 + 1198455358*x^8 + 65087157334*x^9 + 3938132342935*x^10 + ...
%e A317802 restated,
%e A317802 B(x) = 1  +  (1/A(x) - 1/(1+x)^4)  +  (1/A(x) - 1/(1+x)^7)^2  +  (1/A(x) - 1/(1+x)^10)^3  +  (1/A(x) - 1/(1+x)^13)^4  +  (1/A(x) - 1/(1+x)^16)^5  +  (1/A(x) - 1/(1+x)^19)^6  +  (1/A(x) - 1/(1+x)^22)^7  +  (1/A(x) - 1/(1+x)^25)^8  + ...
%e A317802 which can also be written
%e A317802 B(x) = 1/(1+x)^2  +  (1/A(x) - 1/(1+x)^6)/(1+x)^4  +  (1/A(x) - 1/(1+x)^9)^2/(1+x)^6  +  (1/A(x) - 1/(1+x)^12)^3/(1+x)^8  +  (1/A(x) - 1/(1+x)^15)^4/(1+x)^10  +  (1/A(x) - 1/(1+x)^18)^5/(1+x)^12  +  (1/A(x) - 1/(1+x)^21)^6/(1+x)^14  +  (1/A(x) - 1/(1+x)^24)^7/(1+x)^16  +  (1/A(x) - 1/(1+x)^27)^8/(1+x)^18  + ...
%e A317802 ...
%e A317802 (2) The series C(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(3*n+2) )^n begins
%e A317802 C(x) = 1 + 2*x + 7*x^2 + 75*x^3 + 1442*x^4 + 39413*x^5 + 1367095*x^6 + 56736076*x^7 + 2722528369*x^8 + 147785496105*x^9 + 8937999326808*x^10 + ...
%e A317802 restated,
%e A317802 C(x) = 1  +  (1/A(x) - 1/(1+x)^5)  +  (1/A(x) - 1/(1+x)^8)^2  +  (1/A(x) - 1/(1+x)^11)^3  +  (1/A(x) - 1/(1+x)^14)^4  +  (1/A(x) - 1/(1+x)^17)^5  +  (1/A(x) - 1/(1+x)^20)^6  +  (1/A(x) - 1/(1+x)^23)^7  +  (1/A(x) - 1/(1+x)^26)^8  + ...
%e A317802 which can also be written
%e A317802 C(x) = 1/(1+x)  +  (1/A(x) - 1/(1+x)^6)/(1+x)^2  +  (1/A(x) - 1/(1+x)^9)^2/(1+x)^3  +  (1/A(x) - 1/(1+x)^12)^3/(1+x)^4  +  (1/A(x) - 1/(1+x)^15)^4/(1+x)^5  +  (1/A(x) - 1/(1+x)^18)^5/(1+x)^6  +  (1/A(x) - 1/(1+x)^21)^6/(1+x)^7  +  (1/A(x) - 1/(1+x)^24)^7/(1+x)^8  +  (1/A(x) - 1/(1+x)^27)^8/(1+x)^9  + ...
%e A317802 ...
%e A317802 Compare the above series to
%e A317802 1 = 1/(1+x)^3  +  (1/A(x) - 1/(1+x)^6)/(1+x)^6  +  (1/A(x) - 1/(1+x)^9)^2/(1+x)^9  +  (1/A(x) - 1/(1+x)^12)^3/(1+x)^12  +  (1/A(x) - 1/(1+x)^15)^4/(1+x)^15  +  (1/A(x) - 1/(1+x)^18)^5/(1+x)^18  +  (1/A(x) - 1/(1+x)^21)^6/(1+x)^21  +  (1/A(x) - 1/(1+x)^24)^7/(1+x)^24  +  (1/A(x) - 1/(1+x)^27)^8/(1+x)^27  + ...
%o A317802 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] = Vec( sum(m=0, #A, ( 1/Ser(A) - 1/(1+x +x*O(x^#A))^(3*m+3) )^m ) )[#A]/2 ); A[n+1]}
%o A317802 for(n=0, 25, print1(a(n), ", "))
%Y A317802 Cf.  A317339, A317801, A317803, A317667.
%K A317802 nonn
%O A317802 0,2
%A A317802 _Paul D. Hanna_, Aug 12 2018