A317804 Numbers of form 2^i*12^j, with i, j >= 0.
1, 2, 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 144, 192, 256, 288, 384, 512, 576, 768, 1024, 1152, 1536, 1728, 2048, 2304, 3072, 3456, 4096, 4608, 6144, 6912, 8192, 9216, 12288, 13824, 16384, 18432, 20736, 24576, 27648, 32768, 36864, 41472, 49152, 55296, 65536
Offset: 1
Links
- Dario Ch, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
With[{max = 10^5}, Flatten[Table[2^i*12^j, {i, 0, Log2[max]}, {j, 0, Log[12, max/2^i]}]] // Sort] (* Amiram Eldar, Mar 29 2025 *)
-
Python
from heapq import heappush, heappop def sequence(): pq = [1] seen = set(pq) while True: value = heappop(pq) yield value seen.remove(value) for x in 2 * value, 12 * value: if x not in seen: heappush(pq, x) seen.add(x) seq = sequence() finalsequence_list = [next(seq) for i in range(100)] # Dario Ch, Sep 01 2018
-
Python
from sympy import integer_log def A317804(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum((x//12**i).bit_length() for i in range(integer_log(x,12)[0]+1)) return bisection(f,n,n) # Chai Wah Wu, Mar 26 2025
Formula
Sum_{n>=1} 1/a(n) = 24/11. - Amiram Eldar, Mar 29 2025