cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317830 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A175851, the ordinal transform of the nextprime function, A151800.

This page as a plain text file.
%I A317830 #11 Dec 19 2021 04:32:42
%S A317830 1,1,1,7,1,3,1,9,11,7,1,3,1,3,5,171,1,-1,1,-5,5,7,1,-1,11,7,29,35,1,
%T A317830 -7,1,-41,5,7,9,93,1,3,5,11,1,-3,1,-5,3,7,1,-61,11,7,9,27,1,-29,5,-1,
%U A317830 9,11,1,-29,1,3,3,771,9,9,1,-5,5,-3,1,-73,1,3,3,19,9,9,1,-141,-45,7,1,-53,5,7,9,43,1,-63,5,11,9,11,13,1597,1
%N A317830 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A175851, the ordinal transform of the nextprime function, A151800.
%H A317830 Antti Karttunen, <a href="/A317830/b317830.txt">Table of n, a(n) for n = 1..65537</a>
%F A317830 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A175851(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%t A317830 A175851[n_] := If[!CompositeQ[n], 1, n - NextPrime[n, -1] + 1];
%t A317830 f[n_] := f[n] = If[n == 1, 1, (1/2)(A175851[n] - Sum[If[1 < d < n, f[d]* f[n/d], 0], {d, Divisors[n]}])];
%t A317830 a[n_] := Numerator[f[n]];
%t A317830 Array[a, 100] (* _Jean-François Alcover_, Dec 19 2021 *)
%o A317830 (PARI)
%o A317830 A175851(n) = if(1==n,n,1 + n - precprime(n));
%o A317830 A317830aux(n) = if(1==n,n,(A175851(n)-sumdiv(n,d,if((d>1)&&(d<n),A317830aux(d)*A317830aux(n/d),0)))/2);
%o A317830 A317830(n) = numerator(A317830aux(n));
%o A317830 (PARI)
%o A317830 \\ Memoized implementation:
%o A317830 memo317830 = Map();
%o A317830 A317830aux(n) = if(1==n,n,if(mapisdefined(memo317830,n),mapget(memo317830,n),my(v = (A175851(n)-sumdiv(n,d,if((d>1)&&(d<n),A317830aux(d)*A317830aux(n/d),0)))/2); mapput(memo317830,n,v); (v)));
%Y A317830 Cf. A151800, A175851, A046644 (denominators).
%Y A317830 Cf. also A305791, A305805, A305806, A317833, A317834, A317847.
%K A317830 sign,frac
%O A317830 1,4
%A A317830 _Antti Karttunen_, Aug 12 2018