cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317833 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078898 (the ordinal transform of A020639, the smallest prime factor of n).

This page as a plain text file.
%I A317833 #15 Dec 19 2021 04:34:23
%S A317833 1,1,1,7,1,5,1,25,7,9,1,31,1,13,5,363,1,55,1,55,7,21,1,101,7,25,33,79,
%T A317833 1,41,1,1335,11,33,5,305,1,37,13,177,1,59,1,127,47,45,1,1371,7,175,17,
%U A317833 151,1,309,7,253,19,57,1,187,1,61,67,9923,9,95,1,199,23,113,1,927,1,73,87,223,5,113,1,2379,715,81,1,265,11
%N A317833 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078898 (the ordinal transform of A020639, the smallest prime factor of n).
%C A317833 The first negative term is a(840) = -445.
%H A317833 Antti Karttunen, <a href="/A317833/b317833.txt">Table of n, a(n) for n = 1..16384</a>
%F A317833 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A078898(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%t A317833 lpf[n_] := If[n == 1, 1, FactorInteger[n][[1, 1]]];
%t A317833 b[_] = 1;
%t A317833 A078898[n_] := A078898[n] = If[n == 0, 0, With[{t = lpf[n]}, b[t]++]];
%t A317833 f[n_] := f[n] = If[n == 1, 1, (1/2)(A078898[n] - Sum[If[1 < d < n, f[d]*f[n/d], 0], {d, Divisors[n]}])]
%t A317833 a[n_] := Numerator[f[n]];
%t A317833 Array[a, 100] (* _Jean-François Alcover_, Dec 19 2021 *)
%o A317833 (PARI)
%o A317833 up_to = 16384;
%o A317833 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A317833 A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
%o A317833 v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
%o A317833 A078898(n) = v078898[n];
%o A317833 A317833aux(n) = if(1==n,n,(A078898(n)-sumdiv(n,d,if((d>1)&&(d<n),A317833aux(d)*A317833aux(n/d),0)))/2);
%o A317833 A317833(n) = numerator(A317833aux(n));
%Y A317833 Cf. A046644, A078898.
%Y A317833 Cf. also A305798, A305803, A305804, A317830, A317834.
%K A317833 sign,frac
%O A317833 1,4
%A A317833 _Antti Karttunen_, Aug 10 2018