cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317834 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078899 (the ordinal transform of A006530, the largest prime factor of n).

This page as a plain text file.
%I A317834 #10 Dec 19 2021 08:21:41
%S A317834 1,1,1,7,1,3,1,17,11,3,1,19,1,3,5,139,1,23,1,19,5,3,1,39,19,3,45,19,1,
%T A317834 13,1,263,5,3,9,77,1,3,5,55,1,13,1,19,43,3,1,387,27,47,5,19,1,59,9,71,
%U A317834 5,3,1,43,1,3,51,995,9,13,1,19,5,25,1,87,1,3,59,19,13,13,1,707,467,3,1,59,9,3,5,71,1,53,13,19,5,3,9,1069,1
%N A317834 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A078899 (the ordinal transform of A006530, the largest prime factor of n).
%C A317834 The first negative term is a(216) = -97.
%H A317834 Antti Karttunen, <a href="/A317834/b317834.txt">Table of n, a(n) for n = 1..16384</a>
%F A317834 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A078899(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%t A317834 gpf[n_] := If[n == 1, 1, FactorInteger[n][[-1, 1]]];
%t A317834 b[_] = 1;
%t A317834 A078899[n_] := A078899[n] = With[{t = gpf[n]}, b[t]++];
%t A317834 f[n_] := f[n] = If[n == 1, 1, (1/2)(A078899[n] -
%t A317834      Sum[If[1<d<n, f[d] f[n/d], 0], {d, Divisors[n]}])];
%t A317834 a[n_] := Numerator[f[n]];
%t A317834 Array[a, 100] (* _Jean-François Alcover_, Dec 19 2021 *)
%o A317834 (PARI)
%o A317834 up_to = 16384;
%o A317834 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A317834 A006530(n) = if(n>1, vecmax(factor(n)[, 1]), 1);
%o A317834 v078899 = ordinal_transform(vector(up_to,n,A006530(n)));
%o A317834 A078899(n) = v078899[n];
%o A317834 A317834aux(n) = if(1==n,n,(A078899(n)-sumdiv(n,d,if((d>1)&&(d<n),A317834aux(d)*A317834aux(n/d),0)))/2);
%o A317834 A317834(n) = numerator(A317834aux(n));
%Y A317834 Cf. A078899, A046644 (denominators).
%Y A317834 Cf. also A305799, A317833, A317830.
%K A317834 sign,frac
%O A317834 1,4
%A A317834 _Antti Karttunen_, Aug 12 2018