cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317835 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A003415 (arithmetic derivative of n) + A063524 (1, 0, 0, 0, ...).

This page as a plain text file.
%I A317835 #6 Aug 26 2018 12:25:26
%S A317835 1,1,1,15,1,9,1,81,23,13,1,95,1,17,15,1499,1,127,1,151,19,25,1,393,39,
%T A317835 29,193,207,1,87,1,6311,27,37,23,969,1,41,31,661,1,119,1,319,259,49,1,
%U A317835 5499,55,295,39,375,1,769,31,929,43,61,1,593,1,65,347,50075,35,183,1,487,51,183,1,2751,1,77,371,543,35,215,1,9643,5611,85,1
%N A317835 Numerators of rational valued sequence whose Dirichlet convolution with itself yields sequence A003415 (arithmetic derivative of n) + A063524 (1, 0, 0, 0, ...).
%C A317835 The first negative term is a(240) = -5067.
%H A317835 Antti Karttunen, <a href="/A317835/b317835.txt">Table of n, a(n) for n = 1..65537</a>
%F A317835 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003415(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A317835 (PARI)
%o A317835 A003415(n) = {my(fac); if(n<1, 0, fac=factor(n); sum(i=1, matsize(fac)[1], n*fac[i, 2]/fac[i, 1]))}; \\ From A003415
%o A317835 A317835aux(n) = if(1==n,n,(A003415(n)-sumdiv(n,d,if((d>1)&&(d<n),A317835aux(d)*A317835aux(n/d),0)))/2);
%o A317835 A317835(n) = numerator(A317835aux(n));
%Y A317835 Cf. A003415, A063524, A046644 (denominators).
%Y A317835 Cf. also A300251, A300252, A305809.
%K A317835 sign,frac
%O A317835 1,4
%A A317835 _Antti Karttunen_, Aug 12 2018