cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317847 Numerators of sequence whose Dirichlet convolution with itself yields A303757, the ordinal transform of function a(1) = 0; a(n) = phi(n) for n > 1, where phi is Euler's totient function (A000010).

This page as a plain text file.
%I A317847 #13 May 09 2025 03:35:34
%S A317847 1,1,1,7,1,5,1,9,7,5,1,15,1,5,1,43,1,15,1,7,3,3,1,5,3,5,9,15,1,9,1,87,
%T A317847 3,5,1,1,1,5,3,13,1,11,1,11,15,3,1,187,7,19,1,15,1,5,3,21,3,3,1,-1,1,
%U A317847 3,11,387,1,9,1,7,1,13,1,119,1,7,19,23,3,19,1,139,-21,7,1,21,1,5,1,39,1,67,3,3,5,3,5,451,1,15,19,69,1,13,1,-27,7
%N A317847 Numerators of sequence whose Dirichlet convolution with itself yields A303757, the ordinal transform of function a(1) = 0; a(n) = phi(n) for n > 1, where phi is Euler's totient function (A000010).
%H A317847 Antti Karttunen, <a href="/A317847/b317847.txt">Table of n, a(n) for n = 1..65537</a>
%F A317847 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A303757(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%t A317847 A303757[n_] := If[n == 2, 1, Count[EulerPhi[Range[n]] - EulerPhi[n], 0]];
%t A317847 f[n_] := f[n] = If[n == 1, 1, (1/2)(A303757[n] -
%t A317847      Sum[If[1<d<n, f[d] f[n/d], 0], {d, Divisors[n]}])];
%t A317847 a[n_] := Numerator[f[n]];
%t A317847 Array[a, 105] (* _Jean-François Alcover_, Dec 20 2021 *)
%o A317847 (PARI)
%o A317847 up_to = 65537;
%o A317847 ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
%o A317847 DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A317847 v303757 = ordinal_transform(vector(up_to,n,if(1==n,0,eulerphi(n))));
%o A317847 v317847 = DirSqrt(vector(up_to, n, v303757[n]));
%o A317847 A317847(n) = numerator(v317847[n]);
%Y A317847 Cf. A000010, A303757, A046644 (denominators).
%Y A317847 Cf. also A317830, A317833, A317834, A317937.
%K A317847 sign,frac
%O A317847 1,4
%A A317847 _Antti Karttunen_, Aug 14 2018