cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317849 Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.

This page as a plain text file.
%I A317849 #13 Sep 08 2022 08:46:22
%S A317849 1,5,18,56,161,443,1190,3156,8315,21835,57246,149970,392743,1028351,
%T A317849 2692416,7049018,18454775,48315461,126491780,331160070,866988641,
%U A317849 2269806085,5942429868,15557483796,40730021821,106632581993,279167724510,730870591916,1913444051645,5009461563455
%N A317849 Number of states of the Finite State Automaton Gn accepting the language of maximal (or minimal) lexicographic representatives of elements in the positive braid monoid An.
%H A317849 Ramón Flores, Juan González-Meneses, <a href="https://arxiv.org/abs/1808.02755">On lexicographic representatives in braid monoids</a>, arXiv:1808.02755 [math.GR], 2018.
%H A317849 Volker Gebhardt, Juan González-Meneses, <a href="https://doi.org/10.1016/j.jcta.2012.07.003">Generating random braids</a>, J. Comb. Th. A 120 (1), 2013, 111-128.
%F A317849 a(n) = Sum_{i=1..n} (binomial(n+1-i, 2)+1)*Fibonacci(2*i).
%F A317849 Conjecture: g.f. -x*(1-x+x^2) / ( (x^2-3*x+1)*(x-1)^3 ). a(n) = 2*A001519(n+1) -n*(n+1)/2 -2 = 2*A001519(n+1)-A152948(n+2). - _R. J. Mathar_, Aug 17 2018
%t A317849 Table[Sum[(Binomial[n + 1 - k, 2] + 1) Fibonacci[2 k], {k, n}], {n, 30}] (* _Vincenzo Librandi_, Aug 09 2018 *)
%o A317849 (PARI) a(n) = sum(i=1, n, (binomial(n+1-i, 2)+1)*fibonacci(2*i));
%o A317849 (Magma) [&+[(Binomial(n+1-k, 2)+1)*Fibonacci(2*k): k in [1..n]]: n in [1..30]]; // _Vincenzo Librandi_, Aug 09 2018
%o A317849 (GAP) List([1..30],n->Sum([1..n],i->(Binomial(n+1-i,2)+1)*Fibonacci(2*i))); # _Muniru A Asiru_, Aug 09 2018
%K A317849 nonn
%O A317849 1,2
%A A317849 _Michel Marcus_, Aug 09 2018