cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317876 Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.

This page as a plain text file.
%I A317876 #15 Apr 30 2019 21:50:27
%S A317876 1,1,2,4,10,25,67,184,519,1489,4342,12812,38207,114934,348397,1063050,
%T A317876 3262588,10064645,31190985,97061431,303165207,950115502,2986817742,
%U A317876 9415920424,29760442192,94286758293,299377379027,952521579944,3036380284111,9696325863803
%N A317876 Number of free pure symmetric identity multifunctions (with empty expressions allowed) with one atom and n positions.
%C A317876 A free pure symmetric identity multifunction (with empty expressions allowed) (FOI) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an FOI, each of the g_i for i = 1, ..., k >= 0 is an FOI, and for i < j we have g_i < g_j under a canonical total ordering such as the Mathematica ordering of expressions. The number of positions in an FOI is the number of brackets [...] plus the number of o's.
%C A317876 Also the number of free orderless identity Mathematica expressions with one atom and n positions.
%H A317876 Andrew Howroyd, <a href="/A317876/b317876.txt">Table of n, a(n) for n = 1..200</a>
%F A317876 From _Ilya Gutkovskiy_, Apr 30 2019: (Start)
%F A317876 G.f. A(x) satisfies: A(x) = x * (1 + A(x) * exp(Sum_{k>=1} (-1)^(k+1)*A(x^k)/k)).
%F A317876 G.f.: A(x) = Sum_{n>=1} a(n)*x^n = x * (1 + (Sum_{n>=1} a(n)*x^n) * Product_{n>=1} (1 + x^n)^a(n)). (End)
%e A317876 The a(5) = 10 FOIs:
%e A317876   o[o[o]]
%e A317876   o[o][o]
%e A317876   o[o[][]]
%e A317876   o[o,o[]]
%e A317876   o[][o[]]
%e A317876   o[][][o]
%e A317876   o[o[]][]
%e A317876   o[][o][]
%e A317876   o[o][][]
%e A317876   o[][][][]
%t A317876 allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Union[Sort/@Tuples[allIdExpr/@p]],UnsameQ@@#&]}],{p,IntegerPartitions[g]}]]];
%t A317876 Table[Length[allIdExpr[n]],{n,12}]
%o A317876 (PARI) WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v,n,(-1)^(n-1)/n))))-1,-#v)}
%o A317876 seq(n)={my(v=[1]); for(n=2, n, my(t=WeighT(v)); v=concat(v, v[n-1] + sum(k=1, n-2, v[k]*t[n-k-1]))); v} \\ _Andrew Howroyd_, Aug 19 2018
%Y A317876 Cf. A000081, A004111, A052893, A053492, A277996, A280000, A317652, A317653, A317654, A317875.
%Y A317876 Cf. A317877, A317878, A317879, A317880, A317881.
%K A317876 nonn
%O A317876 1,3
%A A317876 _Gus Wiseman_, Aug 09 2018
%E A317876 Terms a(16) and beyond from _Andrew Howroyd_, Aug 19 2018