cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317879 Number of free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.

This page as a plain text file.
%I A317879 #20 Sep 12 2018 12:46:23
%S A317879 1,1,2,4,11,29,83,251,767,2403,7652,24758,80875,266803,887330,2972108,
%T A317879 10016981,33942461,115572864,395226810,1356840007,4674552089,
%U A317879 16156355357,56003840659,194651585875,678220460687,2368505647624,8288873657180,29064904732911
%N A317879 Number of free pure identity multifunctions (with empty expressions allowed) with one atom and n positions.
%C A317879 A free pure identity multifunction (with empty expressions allowed) (IME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g_1, ..., g_k] where h is an IME, each of the g_i for i = 1, ..., k >= 0 is an IME, and for i != j we have g_i != g_j. The number of positions in an IME is the number of brackets [...] plus the number of o's.
%C A317879 Also the number of identity Mathematica expressions with one atom and n positions.
%H A317879 Andrew Howroyd, <a href="/A317879/b317879.txt">Table of n, a(n) for n = 1..500</a>
%e A317879 The a(5) = 11 IMEs:
%e A317879   o[o[o]]
%e A317879   o[o][o]
%e A317879   o[o[][]]
%e A317879   o[o[],o]
%e A317879   o[o,o[]]
%e A317879   o[][o[]]
%e A317879   o[][][o]
%e A317879   o[o[]][]
%e A317879   o[][o][]
%e A317879   o[o][][]
%e A317879   o[][][][]
%t A317879 allIdExpr[n_]:=If[n==1,{"o"},Join@@Cases[Table[PR[k,n-k-1],{k,n-1}],PR[h_,g_]:>Join@@Table[Apply@@@Tuples[{allIdExpr[h],Select[Tuples[allIdExpr/@p],UnsameQ@@#&]}],{p,Join@@Permutations/@IntegerPartitions[g]}]]];
%t A317879 Table[Length[allIdExpr[n]],{n,12}]
%o A317879 (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, n, my(p=prod(k=1, n, 1 + sum(i=1, n\k, binomial(v[k], i)*x^(i*k)*y^i) + O(x*x^n))); v[n]=v[n-1]+sum(k=1, n-2, v[n-k-1]*subst(serlaplace(y^0*polcoef(p, k)), y, 1))); v} \\ _Andrew Howroyd_, Sep 01 2018
%Y A317879 Cf. A000081, A001003, A004111, A277996, A280000, A317875.
%Y A317879 Cf. A317876, A317877, A317878, A317880, A317881.
%K A317879 nonn
%O A317879 1,3
%A A317879 _Gus Wiseman_, Aug 09 2018
%E A317879 Terms a(13) and beyond from _Andrew Howroyd_, Sep 01 2018