cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317882 Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.

This page as a plain text file.
%I A317882 #12 Sep 11 2018 21:17:45
%S A317882 1,1,2,5,12,31,79,211,564,1543,4259,11899,33526,95272,272544,784598,
%T A317882 2270888,6604900,19293793,56581857,166523462,491674696,1455996925,
%U A317882 4323328548,12869353254,38396655023,114803257039,343932660450,1032266513328,3103532577722
%N A317882 Number of free pure achiral multifunctions (with empty expressions allowed) with one atom and n positions.
%C A317882 A free pure achiral multifunction (with empty expressions allowed) (AME) is either (case 1) the leaf symbol "o", or (case 2) a possibly empty expression of the form h[g, ..., g] where h and g are AMEs. The number of positions in an AME is the number of brackets [...] plus the number of o's.
%C A317882 Also the number of achiral Mathematica expressions with one atom and n positions.
%H A317882 Andrew Howroyd, <a href="/A317882/b317882.txt">Table of n, a(n) for n = 1..200</a>
%F A317882 a(1) = 1; a(n > 1) = a(n - 1) + Sum_{0 < k < n - 1} a(k) * Sum_{d|(n - k - 1)} a(d).
%e A317882 The a(5) = 12 AMEs:
%e A317882   o[o[o]]
%e A317882   o[o][o]
%e A317882   o[o[][]]
%e A317882   o[o,o,o]
%e A317882   o[][o[]]
%e A317882   o[][o,o]
%e A317882   o[][][o]
%e A317882   o[o[]][]
%e A317882   o[o,o][]
%e A317882   o[][o][]
%e A317882   o[o][][]
%e A317882   o[][][][]
%t A317882 a[n_]:=If[n==1,1,Sum[a[k]*If[k==n-1,1,Sum[a[d],{d,Divisors[n-k-1]}]],{k,n-1}]];
%t A317882 Array[a,12]
%o A317882 (PARI) seq(n)={my(p=O(x)); for(n=1, n, p = x + p*x*(1 + sum(k=1, n-2, subst(p + O(x^(n\k+1)), x, x^k)) ) + O(x*x^n)); Vec(p)} \\ _Andrew Howroyd_, Aug 19 2018
%o A317882 (PARI) seq(n)={my(v=vector(n)); v[1]=1; for(n=2, #v, v[n]=v[n-1] + sum(i=1, n-2, v[i]*sumdiv(n-i-1, d, v[d]))); v} \\ _Andrew Howroyd_, Aug 19 2018
%Y A317882 Cf. A001003, A002033, A003238, A052893, A053492, A214577, A277996, A317853, A317875.
%Y A317882 Cf. A317883, A317884, A317885.
%K A317882 nonn
%O A317882 1,3
%A A317882 _Gus Wiseman_, Aug 09 2018
%E A317882 Terms a(13) and beyond from _Andrew Howroyd_, Aug 19 2018