This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317908 #20 May 22 2025 10:21:48 %S A317908 0,-1,1,2,2,3,3,4,4,6,5,8,8,9,11,13,12,14,15,16,16,16,18,21,21,23,24, %T A317908 24,25,25,26,27,28,29,30,30,32,32,33,33,36,35,36,37,37,38,39,39,40,41, %U A317908 42,42,43,44,45,44,46,47,48,48,49,50,51,54,55,56,56,58,58,60 %N A317908 Number of decimal places to which the n-th convergent of the continued fraction expansion of Khintchine's constant matches the correct value. %C A317908 Decimal expansion of Khintchine's constant in A002210. %C A317908 For the similar case of the number of correct decimal digits of Pi see A084407. %C A317908 For the similar case of the number of correct decimal digits of log(2) see A317558. %C A317908 For the number of correct binary places see A317907. %H A317908 A.H.M. Smeets, <a href="/A317908/b317908.txt">Table of n, a(n) for n = 1..20000</a> %F A317908 Limit_{n -> oo} (a(n)/n) = 2*log(A086702)/log(10) = 2*A100199/log(10) = 2*A240995. %e A317908 n convergent decimal expansion a(n) %e A317908 == ============= ==================== ==== %e A317908 1 2 / 1 2.0 0 %e A317908 2 3 / 1 3.0 -1 %e A317908 3 8 / 3 2.66... 1 %e A317908 4 43 / 16 2.687... 2 %e A317908 5 51 / 19 2.684... 2 %e A317908 6 94 / 35 2.6857... 3 %e A317908 7 239 / 89 2.6853... 3 %e A317908 8 333 / 124 2.68548... 4 %e A317908 9 572 / 213 2.68544... 4 %e A317908 10 2049 / 763 2.6854521... 6 %e A317908 oo lim = A002210 2.685452001065306... -- %o A317908 (Python) %o A317908 i,cf = 0,[] %o A317908 while i <= 20100: %o A317908 c = A002211(i) %o A317908 cf,i = cf+[c],i+1 %o A317908 p0,p1,q0,q1,i,base = cf[0],1,1,0,1,10 %o A317908 while i <= 20100: %o A317908 p0,p1,q0,q1,i = cf[i]*p0+p1,p0,cf[i]*q0+q1,q0,i+1 %o A317908 a0 = p0//q0 %o A317908 p0 = p0-a0*q0 %o A317908 i,p0,dd = 0,p0*base,[a0] %o A317908 while i < 21000: %o A317908 d,p0,i = p0//q0,(p0%q0)*base,i+1 %o A317908 dd = dd+[d] %o A317908 n,pn0,pn1,qn0,qn1 = 1,a0,1,1,0 %o A317908 while n <= 20000: %o A317908 p,q = pn0,qn0 %o A317908 if p//q != a0: %o A317908 print(n,"- manual!") %o A317908 else: %o A317908 i,p,di = 0,(p%q)*base,a0 %o A317908 while di == dd[i]: %o A317908 i,di,p = i+1,p//q,(p%q)*base %o A317908 print(n,i-1) %o A317908 n,pn0,pn1,qn0,qn1 = n+1,cf[n]*pn0+pn1,pn0,cf[n]*qn0+qn1,qn0 %Y A317908 Cf. A002210, A002211, A086702, A100199, A240995, A317907. %K A317908 sign,base %O A317908 1,4 %A A317908 _A.H.M. Smeets_, Aug 10 2018