This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317911 #6 Aug 10 2018 17:32:01 %S A317911 1,0,2,3,8,13,31,53,112,201,393,710,1343,2409,4431,7912,14255,25223, %T A317911 44787,78519,137700,239347,415343,716001,1231326,2106287,3593141, %U A317911 6102679,10335269,17437476,29337139,49192762,82261930,137148782,228061165,378198633,625623318,1032301633 %N A317911 Expansion of Product_{k>=2} 1/(1 - x^k)^p(k), where p(k) = number of partitions of k (A000041). %C A317911 First differences of A001970. %H A317911 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %F A317911 G.f.: exp(Sum_{j>=1} Sum_{k>=2} p(k)*x^(j*k)/j). %p A317911 with(numtheory): with(combinat): %p A317911 b:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A317911 numbpart(d), d=divisors(j))*b(n-j), j=1..n)/n) %p A317911 end: %p A317911 a:= n-> b(n)-b(n-1): %p A317911 seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 10 2018 %t A317911 nmax = 37; CoefficientList[Series[Product[1/(1 - x^k)^PartitionsP[k], {k, 2, nmax}], {x, 0, nmax}], x] %t A317911 nmax = 37; CoefficientList[Series[Exp[Sum[Sum[PartitionsP[k] x^(j k)/j, {k, 2, nmax}], {j, 1, nmax}]], {x, 0, nmax}], x] %t A317911 b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d PartitionsP[d], {d, Divisors[k]}] b[n - k], {k, 1, n}]/n]; Differences[Table[b[n], {n, -1, 37}]] %Y A317911 Cf. A000041, A001970, A002865, A191659, A291552. %K A317911 nonn %O A317911 0,3 %A A317911 _Ilya Gutkovskiy_, Aug 10 2018