A317914 a(n) = 142099325379199423 + (n-1)*3691994023167450.
142099325379199423, 145791319402366873, 149483313425534323, 153175307448701773, 156867301471869223, 160559295495036673, 164251289518204123, 167943283541371573, 171635277564539023, 175327271587706473, 179019265610873923
Offset: 1
Examples
a(26) = 142099325379199423 + 25*16549135*223092870 = 234399175958385673 is prime.
Links
- Jens Kruse Andersen, All known AP24 to AP26.
- B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Math. 167 (2008), 481-547.
- PrimeGrid, AP26 Search.
- Eric Weisstein's World of Mathematics, Prime Arithmetic Progression.
- Wikipedia, Primes in arithmetic progression.
Programs
-
GAP
List([1..26],n->142099325379199423+(n-1)*3691994023167450);
-
Maple
seq(142099325379199423+(n-1)*3691994023167450,n=1..26);
-
Mathematica
Table[142099325379199423 + (n - 1) 3691994023167450, {n, 1, 26}]
Formula
a(n) = 142099325379199423 + a(n-1)*16549135*23#, where 23# := 2*3*5*7*11*13*17*19*23 = 223092870.
Comments