cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317925 Numerators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).

This page as a plain text file.
%I A317925 #17 May 10 2025 04:39:59
%S A317925 1,1,1,7,2,1,3,25,5,1,5,7,6,3,2,363,8,5,9,7,3,5,11,25,8,3,13,21,14,1,
%T A317925 15,1335,5,4,6,35,18,9,6,25,20,3,21,35,5,11,23,363,33,4,8,21,26,13,10,
%U A317925 75,9,7,29,7,30,15,15,9923,12,5,33,7,11,3,35,125,36,9,8,63,15,3,39,363,139,10,41,21,16,21,14,125,44,5,18,77,15,23
%N A317925 Numerators of rational valued sequence whose Dirichlet convolution with itself yields Euler's phi (A000010).
%H A317925 Antti Karttunen, <a href="/A317925/b317925.txt">Table of n, a(n) for n = 1..16384</a>
%H A317925 Vaclav Kotesovec, <a href="/A317925/a317925.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A317925 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A000010(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A317925 Sum_{k=1..n} A317925(k) / A317926(k) ~ Pi^(-3/2) * n^2 * sqrt(3/(2*log(n))) * (1 + (1/2 - gamma/2 + 3*zeta'(2)/Pi^2) / (2*log(n))), where gamma is the Euler-Mascheroni constant A001620. - _Vaclav Kotesovec_, May 10 2025
%t A317925 f[1] = 1; f[n_] := f[n] = (EulerPhi[n] - DivisorSum[n, f[#]*f[n/#] &, 1 < # < n &])/2; Numerator @ Array[f, 100] (* _Amiram Eldar_, Dec 12 2022 *)
%o A317925 (PARI)
%o A317925 A317925perA317926(n) = if(1==n,n,(eulerphi(n)-sumdiv(n,d,if((d>1)&&(d<n),A317925perA317926(d)*A317925perA317926(n/d),0)))/2);
%o A317925 A317925(n) = numerator(A317925perA317926(n));
%o A317925 (PARI)
%o A317925 \\ Memoized implementation:
%o A317925 memo = Map();
%o A317925 A317925perA317926(n) = if(1==n,n,if(mapisdefined(memo,n),mapget(memo,n),my(v = (eulerphi(n)-sumdiv(n,d,if((d>1)&&(d<n),A317925perA317926(d)*A317925perA317926(n/d),0)))/2); mapput(memo,n,v); (v)));
%o A317925 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, ((1-X)/(1-p*X))^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 09 2025
%Y A317925 Cf. A000010, A317926 (denominators).
%Y A317925 Cf. also A046643, A317831.
%K A317925 nonn,frac
%O A317925 1,4
%A A317925 _Antti Karttunen_, Aug 11 2018