cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317929 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A235199, which is a multiplicative permutation of natural numbers.

This page as a plain text file.
%I A317929 #6 Aug 24 2018 22:11:45
%S A317929 1,1,3,3,7,3,5,5,27,7,17,9,13,5,21,35,11,27,19,21,15,17,23,15,147,13,
%T A317929 135,15,43,21,59,63,51,11,35,81,37,19,39,35,41,15,29,51,189,23,73,105,
%U A317929 75,147,33,39,53,135,119,25,57,43,31,63,61,59,135,231,91,51,67,33,69,35,107,135,47,37,441,57,85,39
%N A317929 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A235199, which is a multiplicative permutation of natural numbers.
%C A317929 Multiplicative because A235199 is.
%C A317929 Question: Are all terms positive? No negative terms in range 1 .. 2^18. Also checked up to n = 2^18 that the denominators match with A299150.
%H A317929 Antti Karttunen, <a href="/A317929/b317929.txt">Table of n, a(n) for n = 1..16384</a>
%F A317929 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A235199(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A317929 (PARI)
%o A317929 up_to = 16384;
%o A317929 A235199(n) = if(n<=4,n,my(f = factor(n)); for(i=1, #f~, if(5==f[i,1], f[i,1] += 2, if(7==f[i,1], f[i,1] -= 2, my(k=primepi(f[i,1])); if(k>4, f[i,1] = prime(A235199(k)))))); factorback(f));
%o A317929 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A317929 v317929aux = DirSqrt(vector(up_to, n, A235199(n)));
%o A317929 A317929(n) = numerator(v317929aux[n]);
%Y A317929 Cf. A235199, A299150 (seems to give the denominators).
%Y A317929 Cf. also A317930.
%K A317929 nonn,frac,mult
%O A317929 1,3
%A A317929 _Antti Karttunen_, Aug 23 2018