cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317930 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A234840, which is a multiplicative permutation of natural numbers.

This page as a plain text file.
%I A317930 #7 Aug 24 2018 22:11:51
%S A317930 1,3,1,27,19,3,61,135,3,57,11,27,281,183,19,2835,101,9,5,513,61,33,
%T A317930 263,135,1083,843,5,1647,29,57,59,15309,11,303,1159,81,1811,15,281,
%U A317930 2565,1091,183,157,297,57,789,409,2835,11163,3249,101,7587,541,15,209,8235,5,87,31,513,7,177,183,168399,5339,33,1013,2727
%N A317930 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A234840, which is a multiplicative permutation of natural numbers.
%C A317930 Multiplicative because A234840 is.
%C A317930 Question: Are all terms positive? No negative terms in range 1 .. 2^17. Also (checked for n <= 2^17) the denominators seem to be given by A317932.
%H A317930 Antti Karttunen, <a href="/A317930/b317930.txt">Table of n, a(n) for n = 1..16384</a>
%F A317930 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A234840(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A317930 (PARI)
%o A317930 up_to = 16384;
%o A317930 A234840(n) = if(n<=1,n,my(f = factor(n)); for(i=1, #f~, if(2==f[i,1], f[i,1]++, if(3==f[i,1], f[i,1]--, f[i,1] = prime(-1+A234840(1+primepi(f[i,1])))))); factorback(f)); \\ _Antti Karttunen_, Aug 23 2018
%o A317930 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A317930 v317930aux = DirSqrt(vector(up_to, n, A234840(n)));
%o A317930 A317930(n) = numerator(v317930aux[n]);
%Y A317930 Cf. A234840, A317932 (seems to give denominators, see A261179).
%Y A317930 Cf. also A317929.
%K A317930 nonn,frac,mult
%O A317930 1,2
%A A317930 _Antti Karttunen_, Aug 23 2018