cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).

This page as a plain text file.
%I A317933 #19 May 10 2025 04:11:41
%S A317933 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,
%T A317933 1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,5,1,1,1,1,
%U A317933 1,1,1,1,1,1,1,1,1,1,1,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,1,1
%N A317933 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A034444 (number of unitary divisors of n).
%C A317933 Multiplicative because A034444 is.
%C A317933 The first 2^20 terms are positive. Is the sequence nonnegative?
%C A317933 Records seem to be A001790, occurring at A000302 (apart from 4).
%H A317933 Antti Karttunen, <a href="/A317933/b317933.txt">Table of n, a(n) for n = 1..65537</a>
%H A317933 Vaclav Kotesovec, <a href="/A317933/a317933.jpg">Graph - the asymptotic ratio (10000 terms)</a>
%F A317933 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A034444(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%F A317933 Sum_{k=1..n} A317933(k) / A317934(k) ~ sqrt(6)*n/Pi. - _Vaclav Kotesovec_, May 10 2025
%o A317933 (PARI)
%o A317933 A034444(n) = (2^omega(n));
%o A317933 A317933perA317934(n) = if(1==n,n,(A034444(n)-sumdiv(n,d,if((d>1)&&(d<n),A317933perA317934(d)*A317933perA317934(n/d),0)))/2);
%o A317933 A317933(n) = numerator(A317933perA317934(n));
%o A317933 (PARI)
%o A317933 up_to = 65537;
%o A317933 \\ Faster:
%o A317933 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A317933 v317933aux = DirSqrt(vector(up_to, n, A034444(n)));
%o A317933 A317933(n) = numerator(v317933aux[n]);
%o A317933 (PARI) for(n=1, 100, print1(numerator(direuler(p=2, n, ((1+X)/(1-X))^(1/2))[n]), ", ")) \\ _Vaclav Kotesovec_, May 09 2025
%Y A317933 Cf. A001790, A034444, A317934 (denominators).
%Y A317933 Cf. also A046643, A317831, A317925, A317937.
%K A317933 nonn,frac,mult
%O A317933 1,16
%A A317933 _Antti Karttunen_, Aug 12 2018