This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317935 #10 Aug 24 2018 22:12:19 %S A317935 1,1,1,7,1,1,1,25,11,1,1,7,1,1,1,363,1,11,1,7,1,1,1,25,19,1,61,7,1,1, %T A317935 1,1335,1,1,1,77,1,1,1,25,1,1,1,7,11,1,1,363,27,19,1,7,1,61,1,25,1,1, %U A317935 1,7,1,1,11,9923,1,1,1,7,1,1,1,275,1,1,19,7,1,1,1,363,1363,1,1,7,1,1,1,25,1,11,1,7,1,1,1,1335,1,27,11,133,1,1,1,25,1 %N A317935 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A003557, n divided by largest squarefree divisor of n. %C A317935 Multiplicative because A003557 is. %C A317935 No negative terms among the first 2^20 terms. Is the sequence nonnegative? %H A317935 Antti Karttunen, <a href="/A317935/b317935.txt">Table of n, a(n) for n = 1..65537</a> %H A317935 Wikipedia, <a href="https://en.wikipedia.org/wiki/Dirichlet_convolution">Dirichlet convolution</a> %F A317935 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A003557(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1. %o A317935 (PARI) %o A317935 A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2]--); factorback(f); }; \\ From A003557 %o A317935 A317935aux(n) = if(1==n,n,(A003557(n)-sumdiv(n,d,if((d>1)&&(d<n),A317935aux(d)*A317935aux(n/d),0)))/2); %o A317935 A317935(n) = numerator(A317935aux(n)); %Y A317935 Cf. A003557, A046644 (denominators). %Y A317935 Cf. also A300717, A300719, A318317. %K A317935 nonn,frac,mult %O A317935 1,4 %A A317935 _Antti Karttunen_, Aug 12 2018