cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).

This page as a plain text file.
%I A317937 #10 Aug 26 2018 12:26:31
%S A317937 1,1,1,3,1,3,1,5,3,3,1,7,1,3,3,35,1,7,1,7,3,3,1,11,3,3,5,7,1,3,1,63,3,
%T A317937 3,3,9,1,3,3,11,1,3,1,7,7,3,1,75,3,7,3,7,1,11,3,11,3,3,1,1,1,3,7,231,
%U A317937 3,3,1,7,3,3,1,19,1,3,7,7,3,3,1,75,35,3,1,1,3,3,3,11,1,1,3,7,3,3,3,133,1,7,7,9,1,3,1,11,3
%N A317937 Numerators of sequence whose Dirichlet convolution with itself yields sequence A001221 (omega n) + A063524 (1, 0, 0, 0, ...).
%C A317937 The first negative term is a(210) = -7.
%H A317937 Antti Karttunen, <a href="/A317937/b317937.txt">Table of n, a(n) for n = 1..65537</a>
%F A317937 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A001221(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A317937 (PARI)
%o A317937 A317937aux(n) = if(1==n,n,(omega(n)-sumdiv(n,d,if((d>1)&&(d<n),A317937aux(d)*A317937aux(n/d),0)))/2);
%o A317937 A317937(n) = numerator(A317937aux(n));
%o A317937 (PARI)
%o A317937 \\ DirSqrt(v) finds u such that v = v[1]*dirmul(u, u).
%o A317937 DirSqrt(v)={my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}
%o A317937 apply(numerator, DirSqrt(vector(100, n, if(1==n, 1, omega(n))))) \\ _Andrew Howroyd_, Aug 13 2018
%Y A317937 Cf. A001221, A063524, A046644 (denominators).
%Y A317937 Cf. also A317831, A317925, A317933, A317845, A317846, A317936, A317938, A317939.
%K A317937 sign,frac
%O A317937 1,4
%A A317937 _Antti Karttunen_, Aug 12 2018