cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317940 Numerators of sequence whose Dirichlet convolution with itself yields A046644.

This page as a plain text file.
%I A317940 #8 Aug 24 2018 22:12:29
%S A317940 1,1,1,7,1,1,1,9,7,1,1,7,1,1,1,427,1,7,1,7,1,1,1,9,7,1,9,7,1,1,1,471,
%T A317940 1,1,1,49,1,1,1,9,1,1,1,7,7,1,1,427,7,7,1,7,1,9,1,9,1,1,1,7,1,1,7,
%U A317940 4099,1,1,1,7,1,1,1,63,1,1,7,7,1,1,1,427,427,1,1,7,1,1,1,9,1,7,1,7,1,1,1,471,1,7,7,49,1,1,1,9,1
%N A317940 Numerators of sequence whose Dirichlet convolution with itself yields A046644.
%C A317940 Multiplicative because A046644 is.
%C A317940 No negative terms among the first 2^20 terms. Is the sequence nonnegative?
%H A317940 Antti Karttunen, <a href="/A317940/b317940.txt">Table of n, a(n) for n = 1..65537</a>
%F A317940 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A046644(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A317940 (PARI)
%o A317940 up_to = 65537;
%o A317940 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A317940 A005187(n) = { my(s=n); while(n>>=1, s+=n); s; };
%o A317940 A046644(n) = factorback(apply(e -> 2^A005187(e),factor(n)[,2]));
%o A317940 v317940aux = DirSqrt(vector(up_to, n, A046644(n)));
%o A317940 A317940(n) = numerator(v317940aux[n]);
%Y A317940 Cf. A005187, A046644, A317934 (denominators), A317941.
%K A317940 nonn,frac,mult
%O A317940 1,4
%A A317940 _Antti Karttunen_, Aug 14 2018