cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317941 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A037445, number of infinitary divisors (or i-divisors) of n.

This page as a plain text file.
%I A317941 #7 Aug 24 2018 22:12:38
%S A317941 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,-5,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,15,1,
%T A317941 1,1,1,1,1,1,3,1,1,1,1,1,1,1,-5,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,-11,1,1,
%U A317941 1,1,1,1,1,3,1,1,1,1,1,1,1,-5,-5,1,1,1,1,1,1,3,1,1,1,1,1,1,1,15,1,1,1,1,1,1,1,3,1
%N A317941 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A037445, number of infinitary divisors (or i-divisors) of n.
%C A317941 Multiplicative because A037445 is.
%H A317941 Antti Karttunen, <a href="/A317941/b317941.txt">Table of n, a(n) for n = 1..65537</a>
%F A317941 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A037445(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1.
%o A317941 (PARI)
%o A317941 up_to = 1+(2^16);
%o A317941 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937.
%o A317941 A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])) \\ From A037445
%o A317941 v317941aux = DirSqrt(vector(up_to, n, A037445(n)));
%o A317941 A317941(n) = numerator(v317941aux[n]);
%Y A317941 Cf. A037445, A317934 (denominators).
%Y A317941 Cf. also A317933, A317940.
%K A317941 sign,frac,mult
%O A317941 1,8
%A A317941 _Antti Karttunen_, Aug 22 2018