This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317941 #7 Aug 24 2018 22:12:38 %S A317941 1,1,1,1,1,1,1,3,1,1,1,1,1,1,1,-5,1,1,1,1,1,1,1,3,1,1,3,1,1,1,1,15,1, %T A317941 1,1,1,1,1,1,3,1,1,1,1,1,1,1,-5,1,1,1,1,1,3,1,3,1,1,1,1,1,1,1,-11,1,1, %U A317941 1,1,1,1,1,3,1,1,1,1,1,1,1,-5,-5,1,1,1,1,1,1,3,1,1,1,1,1,1,1,15,1,1,1,1,1,1,1,3,1 %N A317941 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A037445, number of infinitary divisors (or i-divisors) of n. %C A317941 Multiplicative because A037445 is. %H A317941 Antti Karttunen, <a href="/A317941/b317941.txt">Table of n, a(n) for n = 1..65537</a> %F A317941 a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A037445(n) - Sum_{d|n, d>1, d<n} f(d) * f(n/d)) for n > 1. %o A317941 (PARI) %o A317941 up_to = 1+(2^16); %o A317941 DirSqrt(v) = {my(n=#v, u=vector(n)); u[1]=1; for(n=2, n, u[n]=(v[n]/v[1] - sumdiv(n, d, if(d>1&&d<n, u[d]*u[n/d], 0)))/2); u}; \\ From A317937. %o A317941 A037445(n) = factorback(apply(a -> 2^hammingweight(a), factorint(n)[, 2])) \\ From A037445 %o A317941 v317941aux = DirSqrt(vector(up_to, n, A037445(n))); %o A317941 A317941(n) = numerator(v317941aux[n]); %Y A317941 Cf. A037445, A317934 (denominators). %Y A317941 Cf. also A317933, A317940. %K A317941 sign,frac,mult %O A317941 1,8 %A A317941 _Antti Karttunen_, Aug 22 2018