A317976 a(n) = 2*(a(n-1)+a(n-2)+a(n-3))-a(n-4) for n >= 4, with initial terms 0,0,1,0.
0, 0, 1, 0, 2, 6, 15, 46, 132, 380, 1101, 3180, 9190, 26562, 76763, 221850, 641160, 1852984, 5355225, 15476888, 44729034, 129269310, 373595239, 1079710278, 3120420620, 9018182964, 26063032485, 75323561860, 217689133998, 629133273722, 1818228906675, 5254779066930, 15186593360656, 43890069394800, 126844654738097
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,2,-1).
Crossrefs
Programs
-
Mathematica
(See A192235.)
-
PARI
concat(vector(2), Vec(x^2*(1 - 2*x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4) + O(x^40))) \\ Colin Barker, Sep 09 2018
Formula
G.f.: x^2*(1 - 2*x) / (1 - 2*x - 2*x^2 - 2*x^3 + x^4). - Colin Barker, Sep 09 2018