A317989 Number of genera of real quadratic field with discriminant A003658(n), n >= 2.
1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 1, 4, 2, 2, 2, 2, 1, 4, 2, 2, 1, 2, 4, 1, 2, 4, 4, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 4, 2, 2, 2, 2, 4, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 4, 1, 4, 1, 2
Offset: 2
Keywords
Links
- Rick L. Shepherd, Binary quadratic forms and genus theory, Master of Arts Thesis, University of North Carolina at Greensboro, 2013.
Programs
-
Mathematica
2^(PrimeNu[Select[Range[2, 300], NumberFieldDiscriminant[Sqrt[#]]==#&]] - 1) (* Jean-François Alcover, Jul 25 2019 *)
-
PARI
for(n=2, 1000, if(isfundamental(n), print1(2^(omega(n) - 1), ", ")))
-
PARI
for(n=2, 1000, if(isfundamental(n), print1(2^#select(t->t%2==0, quadclassunit(n).cyc), ", ")))
-
Sage
def A317989_list(len): L = (sloane.A001221(n) for n in (1..len) if is_fundamental_discriminant(n)) return [2^(l-1) for l in L] A317989_list(290) # Peter Luschny, Oct 15 2018
Formula
Extensions
Offset corrected by Jianing Song, Mar 31 2019
Comments