cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317989 Number of genera of real quadratic field with discriminant A003658(n), n >= 2.

Original entry on oeis.org

1, 1, 2, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 4, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 4, 1, 1, 4, 2, 2, 2, 2, 1, 4, 2, 2, 1, 2, 4, 1, 2, 4, 4, 2, 1, 2, 1, 2, 2, 2, 1, 1, 2, 4, 2, 2, 2, 2, 4, 2, 1, 2, 1, 2, 2, 1, 2, 2, 2, 1, 4, 2, 2, 1, 4, 1, 4, 1, 2
Offset: 2

Views

Author

Jianing Song, Oct 03 2018

Keywords

Comments

The number of genera of a quadratic field is equal to the number of elements x in the class group such that x^2 = e where e is the identity.
This is the analog of A003640 for real quadratic fields. Note that for this case "the class group" refers to the narrow class group, or the form class group of indefinite binary quadratic forms with discriminant k.

Crossrefs

Programs

  • Mathematica
    2^(PrimeNu[Select[Range[2, 300], NumberFieldDiscriminant[Sqrt[#]]==#&]] - 1) (* Jean-François Alcover, Jul 25 2019 *)
  • PARI
    for(n=2, 1000, if(isfundamental(n), print1(2^(omega(n) - 1), ", ")))
    
  • PARI
    for(n=2, 1000, if(isfundamental(n), print1(2^#select(t->t%2==0, quadclassunit(n).cyc), ", ")))
    
  • Sage
    def A317989_list(len):
        L = (sloane.A001221(n) for n in (1..len) if is_fundamental_discriminant(n))
        return [2^(l-1) for l in L]
    A317989_list(290) # Peter Luschny, Oct 15 2018

Formula

a(n) = 2^(omega(A003658(n)-1)) = 2^A317991(n), where omega(k) is the number of distinct prime divisors of k.

Extensions

Offset corrected by Jianing Song, Mar 31 2019