cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A317994 Number of inequivalent leaf-colorings of the free pure symmetric multifunction with e-number n.

This page as a plain text file.
%I A317994 #26 Sep 11 2018 21:12:54
%S A317994 1,1,1,2,1,2,1,2,2,2,1,2,2,2,1,4,2,2,2,1,4,2,2,2,2,1,2,4,2,2,2,2,2,1,
%T A317994 2,5,4,2,2,2,2,2,1,2,5,4,2,2,2,2,2,2,1,2,5,4,2,2,2,2,2,2,1,5,2,5,4,2,
%U A317994 2,2,2,2,2,1,5,2,5,4,2,2,4,2,2,2,2,1,5
%N A317994 Number of inequivalent leaf-colorings of the free pure symmetric multifunction with e-number n.
%C A317994 If n = 1 let e(n) be the leaf symbol "o". Given a positive integer n > 1 we construct a unique free pure symmetric multifunction (with empty expressions allowed) e(n) with one atom by expressing n as a power of a number that is not a perfect power to a product of prime numbers: n = rad(x)^(prime(y_1) * ... * prime(y_k)) where rad = A007916. Then e(n) = e(x)[e(y_1), ..., e(y_k)]. For example, e(21025) = o[o[o]][o] because 21025 = rad(rad(1)^prime(rad(1)^prime(1)))^prime(1).
%e A317994 Inequivalent representatives of the a(441) = 11 colorings of the expression e(441) = o[o,o][o] are the following.
%e A317994   1[1,1][1]
%e A317994   1[1,1][2]
%e A317994   1[1,2][1]
%e A317994   1[1,2][2]
%e A317994   1[1,2][3]
%e A317994   1[2,2][1]
%e A317994   1[2,2][2]
%e A317994   1[2,2][3]
%e A317994   1[2,3][1]
%e A317994   1[2,3][2]
%e A317994   1[2,3][4]
%Y A317994 Cf. A007916, A052409, A052410, A277576, A277996, A300626, A316112, A317056, A317658, A317765.
%K A317994 nonn
%O A317994 1,4
%A A317994 _Gus Wiseman_, Aug 18 2018