This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A317995 #12 Aug 21 2018 07:01:53 %S A317995 1,5,35,610,19455,886126,51256460,3547342545,283841669495, %T A317995 25689974114785,2590438823559751,287755717118442960, %U A317995 34906792324639545345,4591374110875921928770,650935065832755644508135,98965182089496736423674254,16063900800630675693846054095,2772975952788175401479179760640,507291948247657812718949908038315 %N A317995 G.f. A(x) satisfies: Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n) )^n = 1. %C A317995 In general, if k > 0 and g.f. A(x) satisfies Sum_{n>=0} (1/A(x) - 1/(1+x)^(k*n))^n = 1, then a(n,k) ~ k^n * n^n / (2^(5/2 + log(2)/(2*k)) * sqrt(1 - log(2)) * exp(n) * log(2)^(2*n+1)). - _Vaclav Kotesovec_, Aug 21 2018 %H A317995 Vaclav Kotesovec, <a href="/A317995/b317995.txt">Table of n, a(n) for n = 0..200</a> %F A317995 G.f. A(x) satisfies: %F A317995 (1) 1 = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n) )^n. %F A317995 (2) A(x) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+5) )^n. %F A317995 (3) 1 = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+5) )^n / (1+x)^(5*n+5). %F A317995 (4) Let B(x,p) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n + p) )^n , %F A317995 then B(x,p) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*(n+1)) )^n / (1+x)^((5-p)*(n+1)), where B(x,0) = 1 and B(x,5) = A(x). %F A317995 a(n) ~ 5^n * n^n / (2^(5/2 + log(2)/10) * sqrt(1 - log(2)) * exp(n) * log(2)^(2*n+1)). - _Vaclav Kotesovec_, Aug 21 2018 %e A317995 G.f.: A(x) = 1 + 5*x + 35*x^2 + 610*x^3 + 19455*x^4 + 886126*x^5 + 51256460*x^6 + 3547342545*x^7 + 283841669495*x^8 + 25689974114785*x^9 + 2590438823559751*x^10 + 287755717118442960*x^11 + 34906792324639545345*x^12 + ... %e A317995 such that %e A317995 1 = 1 + (1/A(x) - 1/(1+x)^5) + (1/A(x) - 1/(1+x)^10)^2 + (1/A(x) - 1/(1+x)^15)^3 + (1/A(x) - 1/(1+x)^20)^4 + (1/A(x) - 1/(1+x)^25)^5 + (1/A(x) - 1/(1+x)^30)^6 + (1/A(x) - 1/(1+x)^35)^7 + (1/A(x) - 1/(1+x)^40)^8 + ... %e A317995 Also, %e A317995 A(x) = 1 + (1/A(x) - 1/(1+x)^10) + (1/A(x) - 1/(1+x)^15)^2 + (1/A(x) - 1/(1+x)^20)^3 + (1/A(x) - 1/(1+x)^25)^4 + (1/A(x) - 1/(1+x)^30)^5 + (1/A(x) - 1/(1+x)^35)^6 + (1/A(x) - 1/(1+x)^40)^7 + (1/A(x) - 1/(1+x)^45)^8 + ... %e A317995 RELATED SERIES. %e A317995 (1) The series B(x,1) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+1) )^n begins %e A317995 B(x,1) = 1 + x + 5*x^2 + 90*x^3 + 2870*x^4 + 130540*x^5 + 7549806*x^6 + 522796431*x^7 + 41863962380*x^8 + 3791942099690*x^9 + ... %e A317995 where B(x,1) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+5) )^n / (1+x)^(4*n+4). %e A317995 (2) The series B(x,2) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+2) )^n begins %e A317995 B(x,2) = 1 + 2*x + 11*x^2 + 195*x^3 + 6215*x^4 + 282530*x^5 + 16329027*x^6 + 1129955520*x^7 + 90428513089*x^8 + 8186559207316*x^9 + ... %e A317995 where B(x,2) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+5) )^n / (1+x)^(3*n+3). %e A317995 (3) The series B(x,3) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+3) )^n begins %e A317995 B(x,3) = 1 + 3*x + 18*x^2 + 316*x^3 + 10070*x^4 + 457825*x^5 + 26455758*x^6 + 1830162112*x^7 + 146417823614*x^8 + 13251391771695*x^9 + ... %e A317995 where B(x,3) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+5) )^n / (1+x)^(2*n+2). %e A317995 (4) The series B(x,4) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+4) )^n begins %e A317995 B(x,4) = 1 + 4*x + 26*x^2 + 454*x^3 + 14471*x^4 + 658355*x^5 + 38054529*x^6 + 2632673917*x^7 + 210610397992*x^8 + 19059538561119*x^9 + ... %e A317995 where B(x,4) = Sum_{n>=0} ( 1/A(x) - 1/(1+x)^(5*n+5) )^n / (1+x)^(n+1). %o A317995 (PARI) {a(n) = my(A=[1]); for(i=1, n, A=concat(A, 0); A[#A] =Vec( sum(m=0, #A, ( 1/Ser(A) - 1/(1+x +x*O(x^#A))^(5*m+5) )^m ) )[#A]/2 ); A[n+1]} %o A317995 for(n=0, 25, print1(a(n), ", ")) %Y A317995 Cf. A317339, A317801, A317802, A317803. %K A317995 nonn %O A317995 0,2 %A A317995 _Paul D. Hanna_, Aug 15 2018