This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318000 #22 Dec 13 2024 16:31:52 %S A318000 1,4,24,256,3840,73024,1688064,45991936,1443102720,51249316864, %T A318000 2032187080704,89000317321216,4266655914393600,222232483747938304, %U A318000 12496860570760249344,754582425618372100096,48694058763984285204480,3344368871374116303929344,243577066332044464943529984,18751361596512920229250072576 %N A318000 E.g.f.: log( 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))) ). %H A318000 Paul D. Hanna, <a href="/A318000/b318000.txt">Table of n, a(n) for n = 1..300</a> %F A318000 E.g.f. A(x) satisfies: %F A318000 (1) A(-A(-x)) = x. %F A318000 (2) 1 = Sum_{n>=0} ( x + (-1)^n*A(x) )^n/n!. %F A318000 (3a) 1 = cosh(A(x) + x) - sinh(A(x) - x). %F A318000 (3b) 1 = cosh(x)*exp(-A(x)) + sinh(x)*exp(A(x)). %F A318000 (3c) 1 = exp(x)*cosh(A(x)) - exp(-x)*sinh(A(x)). %F A318000 (4a) A(x) = log( 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))) ). %F A318000 (4b) A(x) = log( (1 - sqrt(1 - 2*sinh(2*x))) / (2*sinh(x)) ). %F A318000 (5) A(x) = F(F(x)) where F(x) is the e.g.f. of A318001, which satisfies: 1 = cosh(F(x) - F(-x)) - sinh(F(x) + F(-x)). %F A318000 a(n) ~ 5^(1/4) * 2^(n - 1/2) * n^(n-1) / (exp(n) * log((1 + sqrt(5))/2)^(n - 1/2)). - _Vaclav Kotesovec_, Aug 21 2018 %e A318000 E.g.f.: A(x) = x + 4*x^2/2! + 24*x^3/3! + 256*x^4/4! + 3840*x^5/5! + 73024*x^6/6! + 1688064*x^7/7! + 45991936*x^8/8! + 1443102720*x^9/9! + 51249316864*x^10/10! + ... %e A318000 such that cosh(x + A(x)) + sinh(x - A(x)) = 1. %e A318000 RELATED SERIES. %e A318000 (1) exp(A(x)) = 1 + x + 5*x^2/2! + 37*x^3/3! + 425*x^4/4! + 6601*x^5/5! + 129005*x^6/6! + 3044077*x^7/7! + 84239825*x^8/8! + ... + A318002(n)*x^n/n! + ... %e A318000 which equals 2*cosh(x) / (1 + sqrt(1 - 2*sinh(2*x))). %e A318000 (2) Let F(F(x)) = A(x) then %e A318000 F(x) = x + 2*x^2/2! + 6*x^3/3! + 56*x^4/4! + 600*x^5/5! + 8432*x^6/6! + 144816*x^7/7! + 2892416*x^8/8! + 66721920*x^9/9! + ... + A318001(n)*x^n/n! + ... %e A318000 where cosh(F(x) - F(-x)) - sinh(F(x) + F(-x)) = 1. %o A318000 (PARI) {a(n) = my(A = log( 2*cosh(x +x^2*O(x^n)) / (1 + sqrt(1 - 2*sinh(2*x +x^2*O(x^n)))) )); n!*polcoeff(A,n)} %o A318000 for(n=1,25,print1(a(n),", ")) %Y A318000 Cf. A318001 (A(A(x))), A318002 (exp(A(x))), A318005 (variant). %K A318000 nonn %O A318000 1,2 %A A318000 _Paul D. Hanna_, Aug 20 2018