cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318025 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1/(1 - j*x^(k*j))).

This page as a plain text file.
%I A318025 #23 Aug 24 2018 06:35:26
%S A318025 1,4,7,18,26,66,98,216,361,701,1171,2287,3763,6887,11707,20740,34637,
%T A318025 60678,100581,172609,285924,481671,791317,1323831,2156856,3561119,
%U A318025 5784021,9459559,15250217,24783964,39713789,64032664,102200203,163617694,259745174,413886941,653715969,1035539948
%N A318025 Expansion of Sum_{k>=1} (-1 + Product_{j>=1} 1/(1 - j*x^(k*j))).
%C A318025 Inverse Moebius transform of A006906.
%H A318025 N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>
%F A318025 G.f.: Sum_{k>=1} A006906(k)*x^k/(1 - x^k).
%F A318025 a(n) = Sum_{d|n} A006906(d).
%t A318025 nmax = 38; Rest[CoefficientList[Series[Sum[-1 + Product[1/(1 - j x^(k j)), {j, 1, nmax}], {k, 1, nmax}], {x, 0, nmax}], x]]
%t A318025 b[n_] := b[n] = SeriesCoefficient[Product[1/(1 - k x^k), {k, 1, n}], {x, 0, n}]; a[n_] := a[n] = SeriesCoefficient[Sum[b[k] x^k/(1 - x^k), {k, 1, n}], {x, 0, n}]; Table[a[n], {n, 38}]
%t A318025 Table[Sum[Total[Times @@@ IntegerPartitions[d]], {d, Divisors[n]}], {n, 38}]
%Y A318025 Cf. A006906, A047968, A300277, A302549, A318290.
%K A318025 nonn
%O A318025 1,2
%A A318025 _Ilya Gutkovskiy_, Aug 23 2018