cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n.

This page as a plain text file.
%I A318046 #13 Oct 23 2021 21:16:56
%S A318046 1,2,3,2,4,3,3,2,5,4,5,3,4,3,7,2,4,5,3,4,5,5,6,3,10,4,9,3,5,7,6,2,9,4,
%T A318046 7,5,4,3,7,4,5,5,4,5,13,6,8,3,5,10,7,4,3,9,13,3,5,5,5,7,6,6,9,2,10,9,
%U A318046 4,4,11,7,5,5,6,4,19,3,9,7,6,4,17,5,7,5
%N A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n.
%C A318046 We require that an initial subtree contain either all or none of the branchings under any given node.
%H A318046 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A318046 a(1) = 1 and if n > 1 has prime factorization n = prime(x_1)^y_1 * ... * prime(x_k)^y_k then a(n) = 1 + a(x_1)^y_1 * ... * a(x_k)^y_k.
%e A318046 70 is the Matula-Goebel number of the tree (o((o))(oo)), which has 7 distinct initial subtrees: {o, (ooo), (oo(oo)), (o(o)o), (o(o)(oo)), (o((o))o), (o((o))(oo))}. So a(70) = 7.
%t A318046 si[n_]:=If[n==1,1,1+Product[si[PrimePi[b[[1]]]]^b[[2]],{b,FactorInteger[n]}]];
%t A318046 Array[si,100]
%Y A318046 Cf. A000081, A007097, A007853, A049076, A061773, A061775, A076146, A109082, A109129, A206491, A303431, A316476, A317713.
%K A318046 nonn
%O A318046 1,2
%A A318046 _Gus Wiseman_, Aug 13 2018