This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318046 #13 Oct 23 2021 21:16:56 %S A318046 1,2,3,2,4,3,3,2,5,4,5,3,4,3,7,2,4,5,3,4,5,5,6,3,10,4,9,3,5,7,6,2,9,4, %T A318046 7,5,4,3,7,4,5,5,4,5,13,6,8,3,5,10,7,4,3,9,13,3,5,5,5,7,6,6,9,2,10,9, %U A318046 4,4,11,7,5,5,6,4,19,3,9,7,6,4,17,5,7,5 %N A318046 a(n) is the number of initial subtrees (subtrees emanating from the root) of the unlabeled rooted tree with Matula-Goebel number n. %C A318046 We require that an initial subtree contain either all or none of the branchings under any given node. %H A318046 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a> %F A318046 a(1) = 1 and if n > 1 has prime factorization n = prime(x_1)^y_1 * ... * prime(x_k)^y_k then a(n) = 1 + a(x_1)^y_1 * ... * a(x_k)^y_k. %e A318046 70 is the Matula-Goebel number of the tree (o((o))(oo)), which has 7 distinct initial subtrees: {o, (ooo), (oo(oo)), (o(o)o), (o(o)(oo)), (o((o))o), (o((o))(oo))}. So a(70) = 7. %t A318046 si[n_]:=If[n==1,1,1+Product[si[PrimePi[b[[1]]]]^b[[2]],{b,FactorInteger[n]}]]; %t A318046 Array[si,100] %Y A318046 Cf. A000081, A007097, A007853, A049076, A061773, A061775, A076146, A109082, A109129, A206491, A303431, A316476, A317713. %K A318046 nonn %O A318046 1,2 %A A318046 _Gus Wiseman_, Aug 13 2018