cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318048 Size of the span of the unlabeled rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 3, 2, 4, 4, 4, 2, 6, 6, 5, 4, 6, 3, 9, 2, 6, 6, 4, 6, 6, 8, 10, 4, 12, 6, 10, 4, 9, 9, 6, 2, 12, 6, 9, 6, 6, 4, 9, 6, 9, 7, 6, 8, 15, 10, 15, 4, 5, 12, 9, 7, 4, 10, 16, 4, 7, 9, 8, 9, 10, 10, 11, 2, 13, 12, 6, 7, 14, 10, 9, 6, 10, 7, 21, 3, 12, 10, 12, 6
Offset: 1

Views

Author

Gus Wiseman, Aug 13 2018

Keywords

Comments

The span of a tree is defined to be the set of possible terminal subtrees of initial subtrees, or, which is the same, the set of possible initial subtrees of terminal subtrees.

Examples

			42 is the Matula-Goebel number of (o(o)(oo)), which has span {o, (o), (oo), (ooo), (oo(oo)), (o(o)o), (o(o)(oo))}, so a(42) = 7.
		

Crossrefs

Programs

  • Mathematica
    ext[c_,{}]:=c;ext[c_,s:{}]:=Extract[c,s];rpp[c_,v_,{}]:=v;rpp[c_,v_,s:{}]:=ReplacePart[c,v,s];
    RLO[ear_,rue:{}]:=Union@@(Function[x,rpp[ear,x,#2]]/@ReplaceList[ext[ear,#2],#1]&@@@Select[Tuples[{rue,Position[ear,_]}],MatchQ[ext[ear,#[[2]]],#[[1,1]]]&]);
    RL[ear_,rue:{}]:=FixedPoint[Function[keeps,Union[keeps,Join@@(RLO[#,rue]&/@keeps)]],{ear}];
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    MGTree[n_]:=If[n==1,{},MGTree/@primeMS[n]];
    Table[Length[Union[Cases[RL[MGTree[n],{List[__List]:>List[]}],_List,{1,Infinity}]]],{n,100}]