cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318050 Triangle read by rows: T(n,k) is the number of prime knots with n crossings whose unknotting numbers are k.

This page as a plain text file.
%I A318050 #24 Apr 06 2025 07:40:46
%S A318050 0,1,0,1,0,1,1,0,3,0,3,3,1,0,9,11,1,0,17,22,9,1
%N A318050 Triangle read by rows: T(n,k) is the number of prime knots with n crossings whose unknotting numbers are k.
%C A318050 The unknotting number of a knot is the minimal number of crossing switches required to convert a knot into the unknot (0 crossing).
%C A318050 Row n is a partition of A002863(n).
%C A318050 Row 10 cannot yet be completed because the unknotting number of some knots are still unknown.
%D A318050 P. R. Cromwell, Knots and Links, Cambridge University Press, 2004, pp. 151-154.
%H A318050 S. A. Bleiler, <a href="http://dx.doi.org/10.1017/S0305004100062381">A note on unknotting number</a>, Math. Proc. Camb. Phil. Soc. Vol. 96 (1984).
%H A318050 M. Borodzik and S. Friedl, <a href="http://dx.doi.org/10.2140/agt.2015.15.85">The unknotting number and classical invariants, I</a>, Algebraic and Geometric Topology Vol. 15 (2015), 85-135.
%H A318050 J. C. Cha and C. Livingston, <a href="https://knotinfo.math.indiana.edu/">KnotInfo: Table of Knot Invariants</a>.
%H A318050 S. Jablan and L. Radovic, <a href="http://elib.mi.sanu.ac.rs/files/journals/publ/115/n109p087.pdf">Unknotting numbers of alternating knot and link families</a>, Publications de l'Institut Mathématiques, Nouvelle série, tome 95 (2014), 87-99.
%H A318050 K. Murasugi, <a href="http://dx.doi.org/10.2307/1994215">On a certain numerical invariant of link types</a>, Trans. Am. Math. Soc. Vol. 117 (1965), 387-422.
%H A318050 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/UnknottingNumber.html">Unknotting Number</a>.
%H A318050 <a href="/index/K#knots">Index entries for sequences related to knots</a>
%e A318050 Triangle begins:
%e A318050 n\k|  0   1   2   3   4
%e A318050 ---+-------------------
%e A318050 3  |  0   1
%e A318050 4  |  0   1
%e A318050 5  |  0   1   1
%e A318050 6  |  0   3
%e A318050 7  |  0   3   3   1
%e A318050 8  |  0   9  11   1
%e A318050 9  |  0  17  22   9   1
%Y A318050 Cf. A002863, A078477, A089797, A089891, A089892, A173466, A318051, A318052.
%K A318050 nonn,hard,more,tabf
%O A318050 3,9
%A A318050 _Franck Maminirina Ramaharo_, Aug 14 2018