cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318051 Irregular triangle read by rows: T(n,k) is the number of prime knots with n crossings whose signatures are k in absolute value.

This page as a plain text file.
%I A318051 #28 Apr 06 2025 07:41:42
%S A318051 0,0,1,1,0,0,1,0,1,2,0,1,1,0,3,0,2,0,1,9,0,8,0,3,0,1,11,0,21,0,12,0,4,
%T A318051 0,1,54,0,68,0,32,0,1,0,1,148,228,0,124,0,44,7,0,1,619,0,900,0,461,0,
%U A318051 162,0,34
%N A318051 Irregular triangle read by rows: T(n,k) is the number of prime knots with n crossings whose signatures are k in absolute value.
%C A318051 The signature of a knot is a classical lower bound for the unknotting number of knots. If sigma(K) and u(K) denote the signature and the unknotting number of the knot K, respectively, then 0 <= (1/2)*abs(sigma(K)) <= u(K). If one can empirically find an unknotting number u*(K) = (1/2)*abs(sigma(K)), then it is its exact value.
%C A318051 Row n is a partition of A002863(n).
%D A318051 P. R. Cromwell, Knots and Links, Cambridge University Press, 2004, pp. 151-154.
%D A318051 W. B. R. Lickorish, An introduction to Knot Theory, Springer, 1997, Table 8.1, p. 85.
%H A318051 J. C. Cha and C. Livingston, <a href="https://knotinfo.math.indiana.edu/">KnotInfo: Table of Knot Invariants</a>
%H A318051 J. C. Cha and C. Livingston, <a href="https://knotinfo.math.indiana.edu/descriptions/signature.html">Signature</a>
%H A318051 K. Murasugi, <a href="http://dx.doi.org/10.2307/1994215">On a certain numerical invariant of link types</a>, Trans. Am. Math. Soc. Vol. 117 (1965), 387-422.
%H A318051 A. Stoimenow, <a href="http://stoimenov.net/stoimeno/homepage/ptab/sig10.html">Table of the signature</a>
%H A318051 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KnotSignature.html">Knot Signature</a>
%H A318051 Wikipedia, <a href="https://en.wikipedia.org/wiki/Signature_of_a_knot">Signature of a knot</a>
%H A318051 <a href="/index/K#knots">Index entries for sequences related to knots</a>
%e A318051 Triangle begins:
%e A318051 n\k|   0   1   2   3   4   5   6   7   8   9  10
%e A318051 ---+--------------------------------------------
%e A318051 3  |   0   0   1
%e A318051 4  |   1
%e A318051 5  |   0   0   1   0   1
%e A318051 6  |   2   0   1
%e A318051 7  |   1   0   3   0   2   0   1
%e A318051 8  |   9   0   8   0   3   0   1
%e A318051 9  |  11   0  21   0  12   0   4   0   1
%e A318051 10 |  54   0  68   0  32   0  10   0   1
%e A318051 11 | 148   0 228   0 124   0  44   0   7   0   1
%e A318051 12 | 619   0 900   0 461   0 162   0  34
%Y A318051 Cf. A002863, A172293, A172184, A172441, A172444, A172486, A173466, A318050, A318052.
%K A318051 nonn,hard,more,tabf
%O A318051 3,10
%A A318051 _Franck Maminirina Ramaharo_, Aug 14 2018