This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318053 #20 Apr 13 2020 12:05:37 %S A318053 1,1,2,2,3,4,5,7,9,12,15,19,24,31,39,50,63,80,101,128,161,204,257,324, %T A318053 409,515,650,819,1032,1301,1639,2066,2603,3280,4133,5207,6561,8266, %U A318053 10415,13122,16533,20831,26245,33067,41662,52491,66135,83325 %N A318053 a(n) = ceiling(sqrt(2*a(n-1)*a(n-2))), a(1) = a(2) = 1. %C A318053 a(n)/a(n-1) ~ cube root of 2. %C A318053 a(n)/a(n-3) ~ 2. %e A318053 a(12) = ceiling(sqrt(2*a(11)*a(10))) = ceiling(sqrt(2*15*12)) = ceiling(sqrt(360)) = 19. %t A318053 a[n_] := a[n] = If[n<3, 1, Ceiling[Sqrt[2 a[n-1] a[n-2]]]]; Array[a, 50] (* _Giovanni Resta_, Nov 26 2019 *) %t A318053 RecurrenceTable[{a[1]==a[2]==1,a[n]==Ceiling[Sqrt[2a[n-1]a[n-2]]]},a,{n,50}] (* _Harvey P. Dale_, Apr 13 2020 *) %o A318053 (Python) %o A318053 import math %o A318053 r = [] %o A318053 r.append(1) %o A318053 r.append(1) %o A318053 i = 2 %o A318053 while i < 1001: %o A318053 r.append(math.ceil(math.sqrt(2*r[i-1]*r[i-2]))) %o A318053 i += 1 %o A318053 print(r) %Y A318053 Cf. A017981. %K A318053 nonn %O A318053 1,3 %A A318053 _Oren Meisner_, Aug 14 2018