cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A318057 a(n) is the number of binary places to which n-th convergent of continued fraction expansion of the golden section matches the correct value.

This page as a plain text file.
%I A318057 #19 Nov 04 2024 18:15:31
%S A318057 0,-2,3,2,5,2,6,9,10,9,13,12,15,16,19,16,20,22,24,25,27,29,28,30,33,
%T A318057 32,36,32,38,32,41,42,44,45,46,47,50,48,52,54,53,56,53,58,59,60,64,62,
%U A318057 66,62,67,69,71,73,75,74,77,78,80,82,81,84,81,87,81,88,90
%N A318057 a(n) is the number of binary places to which n-th convergent of continued fraction expansion of the golden section matches the correct value.
%C A318057 The correct binary value of the golden section is given in A068432; the continued fraction terms of the golden section is given in A000012.
%C A318057 For the number of correct decimal digits of the golden section see A318058.
%C A318057 The denominator of the k-th convergent obtained from a continued fraction tend to k*A001622; the error between the k-th convergent and the constant itself tends to 1/(2*k*A001622), or in binary digits 2*k*log(A001622)/log(2) bits after the binary point.
%C A318057 The sequence for quaternary digits is obtained by floor(a(n)/2), the sequence for octal digits is obtained by floor(a(n)/3), and the sequence for hexadecimal digits is obtained by floor(a(n)/4).
%F A318057 Lim {n -> oo} a(n)/n = 2*log(A001622)/log(2) = 2*A002390/log(2) = A202543/log(2) = 2*A242208.
%e A318057    n   convergent         binary expansion       a(n)
%e A318057   ==  =============  ==========================  ====
%e A318057    1    1 / 1          1.0                         0
%e A318057    2    2 / 1         10.0                        -2
%e A318057    3    3 / 2          1.1000                      3
%e A318057    4    5 / 3          1.101                       2
%e A318057    5    8 / 5          1.100110                    5
%e A318057    6   13 / 8          1.101                       2
%e A318057    7   21 / 13         1.1001110                   6
%e A318057    8   34 / 21         1.1001111001                9
%e A318057    9   55 / 34         1.10011110000              10
%e A318057   10   89 / 55         1.1001111001                9
%e A318057   oo  lim = A068432    1.1001111000110111011110   --
%o A318057 (Python)
%o A318057 p, q, i, base = 1, 1, 0, 2
%o A318057 while i < 20200:
%o A318057     p, q, i = p+q, p, i+1
%o A318057 a0, p, q = p//q, q, p
%o A318057 i, p, dd = 0, p*base, [0]
%o A318057 while i < 30000:
%o A318057     d, p, i = p//q, (p%q)*base, i+1
%o A318057     dd = dd+[d]
%o A318057 n, pn, qn = 0, 1, 0
%o A318057 while n < 20000:
%o A318057     n, pn, qn = n+1, pn+qn, pn
%o A318057     if pn//qn != a0:
%o A318057         print(n, "- manual!")
%o A318057     else:
%o A318057         i, p, q, di = 0, (pn%qn)*base, qn, 0
%o A318057         while di == dd[i]:
%o A318057             i, di, p = i+1, p//q, (p%q)*base
%o A318057         print(n, i-1)
%Y A318057 Cf. A000012, A001622, A002390, A068432, A202543, A242208, A318058.
%K A318057 sign,base
%O A318057 1,2
%A A318057 _A.H.M. Smeets_, Aug 14 2018