A318071 Number of nX4 0..1 arrays with every element unequal to 0, 1, 2 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
8, 20, 41, 73, 149, 372, 861, 2016, 4901, 11698, 27986, 67359, 161518, 387556, 930666, 2233451, 5360842, 12868595, 30887501, 74139733, 177960357, 427157604, 1025312853, 2461074852, 5907342192, 14179472548, 34035173339, 81695041734
Offset: 1
Keywords
Examples
Some solutions for n=5 ..0..0..0..0. .0..1..1..1. .0..1..0..0. .0..1..1..1. .0..0..0..0 ..0..0..0..0. .1..1..1..1. .1..1..0..0. .1..1..1..1. .0..0..1..0 ..0..0..0..0. .1..1..1..1. .1..1..0..0. .0..0..0..0. .0..1..0..0 ..1..1..1..1. .1..1..1..1. .1..1..0..0. .0..0..0..0. .0..0..0..0 ..1..1..1..0. .1..1..1..1. .1..1..0..0. .0..0..0..1. .0..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A318075.
Formula
Empirical: a(n) = 2*a(n-1) +a(n-2) +2*a(n-3) -3*a(n-4) -5*a(n-5) -2*a(n-7) +7*a(n-8) -a(n-9) -2*a(n-10) +8*a(n-11) -3*a(n-12) -a(n-13) -3*a(n-14) -3*a(n-15) +4*a(n-16) +a(n-17) -a(n-18) for n>21
Comments