A318075 T(n,k)=Number of nXk 0..1 arrays with every element unequal to 0, 1, 2 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
1, 2, 2, 4, 6, 4, 8, 10, 10, 8, 16, 20, 18, 20, 16, 32, 42, 41, 41, 42, 32, 64, 89, 81, 73, 81, 89, 64, 128, 190, 179, 149, 149, 179, 190, 128, 256, 407, 404, 372, 316, 372, 404, 407, 256, 512, 873, 893, 861, 854, 854, 861, 893, 873, 512, 1024, 1874, 2000, 2016, 2195
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..0. .0..0..0..1. .0..0..0..0. .0..0..1..1. .0..1..1..0 ..1..1..0..1. .0..0..1..0. .0..1..1..0. .0..0..1..1. .1..1..0..0 ..1..1..1..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .1..0..0..0 ..1..1..1..1. .0..1..0..0. .0..0..0..1. .0..0..1..1. .0..0..0..0 ..1..1..1..0. .1..0..0..1. .0..0..1..1. .0..0..1..1. .1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..420
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -a(n-4) for n>6
k=3: a(n) = 2*a(n-1) +a(n-2) +a(n-3) -3*a(n-4) -6*a(n-5) +6*a(n-6) for n>10
k=4: [order 18] for n>21
k=5: [order 29] for n>33
k=6: [order 56] for n>61
Comments