A318100 Exponential pseudoperfect numbers: numbers n equal to the sum of a subset of their proper exponential divisors.
36, 180, 252, 396, 468, 612, 684, 828, 900, 1044, 1116, 1260, 1332, 1476, 1548, 1692, 1764, 1800, 1908, 1980, 2124, 2196, 2340, 2412, 2556, 2628, 2700, 2772, 2844, 2988, 3060, 3204, 3276, 3420, 3492, 3600, 3636, 3708, 3852, 3924, 4068, 4140, 4284, 4356, 4500
Offset: 1
Keywords
Examples
900 is in the sequence since its proper exponential divisors are 30, 60, 90, 150, 180, 300, 450 and 900 = 150 + 300 + 450.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, e-Divisor
- Eric Weisstein's World of Mathematics, e-Perfect Number
Crossrefs
Programs
-
Mathematica
dQ[n_,m_] := (n>0&&m>0 &&Divisible[n,m]); expDivQ[n_,d_] := Module[ {ft=FactorInteger[n]}, And@@MapThread[dQ, {ft[[;;,2]], IntegerExponent[ d,ft[[;;,1]]]} ]]; eDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d,expDivQ[n,#]&] ]; esigma[1]=1; esigma[n_] := Total@eDivs[n]; eDeficientQ[n_] := esigma[n] < 2n; a = {}; n = 0; While[Length[a] < 30, n++; If[eDeficientQ[n], Continue[]]; d = Most[eDivs[n]]; c = SeriesCoefficient[Series[Product[1 + x^d[[i]], {i, Length[d]}], {x, 0, n}], n]; If[c > 0, AppendTo[a, n]]]; a
-
PARI
ediv(n,f=factor(n))=my(v=List(),D=apply(divisors,f[,2]~),t=#f~); forvec(u=vector(t,i,[1,#D[i]]), listput(v,prod(j=1,t,f[j,1]^D[j][u[j]]))); Set(v) is(n)=my(e=ediv(n)); e=e[1..#e-1]; forsubset(#e, v, if(vecsum(vecextract(e,v))==n, return(1))); 0 \\ Charles R Greathouse IV, Oct 29 2018