This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318110 #48 Oct 23 2018 12:00:49 %S A318110 0,1,1,3,3,1,26,26,11,2,367,367,167,42,5,7142,7142,3352,944,163,14, %T A318110 176766,176766,84308,25006,4965,638,42,5304356,5304356,2554329,779246, %U A318110 165474,24924,2510,132,186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429,7566084686,7566084686,3683084984,1156456088,261067596,44535120,5829880,574128,39203,1430 %N A318110 Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section. %H A318110 Gheorghe Coserea, <a href="/A318110/b318110.txt">Rows n=0..100, flattened</a> %H A318110 Noam Zeilberger, <a href="http://arxiv.org/abs/1509.07596">Counting isomorphism classes of beta-normal linear lambda terms</a>, arXiv:1509.07596 [cs.LO], 2015. %F A318110 A(x,t) = Sum_{n>=0} P_n(t)*x^n, where P_n(t) = Sum_{k=0..n} T(n,k)*t^k, satisfies: %F A318110 A = x*t/(1-A) + deriv(A,t), with A(0,t) = 0, deriv(A,x)(0,t) = 1+t (deriv(A,v) represents the derivative of A with respect to variable v). %e A318110 A(x,t) = (1+t)*x + (3+3*t+t^2)*x^2 + (26+26*t+11*t^2+2*t^3)*x^3 + ... %e A318110 Triangle starts: %e A318110 n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] %e A318110 [0] 0; %e A318110 [1] 1, 1; %e A318110 [2] 3, 3, 1; %e A318110 [3] 26, 26, 11, 2; %e A318110 [4] 367, 367, 167, 42, 5; %e A318110 [5] 7142, 7142, 3352, 944, 163, 14; %e A318110 [6] 176766, 176766, 84308, 25006, 4965, 638, 42; %e A318110 [7] 5304356, 5304356, 2554329, 779246, 165474, 24924, 2510, 132; %e A318110 [8] 186954535,186954535,90600599,28120586,6200455,1010814,121086,9908,429; %e A318110 [9] ... %t A318110 rows = 10; Clear[A]; A[x_, t_] = (1+t)x; %t A318110 Do[A[x_, t_] = Series[x t/(1-A[x, t]) + D[A[x, t], t], {x, 0, n}, {t, 0, n}] // Normal, {n, 2 rows}]; %t A318110 CoefficientList[#, t]& /@ CoefficientList[A[x, t], x] /. {} -> {0} // Take[#, rows]& // Flatten (* _Jean-François Alcover_, Oct 23 2018 *) %o A318110 (PARI) %o A318110 seq(N) = { %o A318110 my(x='x+O('x^N), t='t, F0=(1+t)*x, F1=0, n=1); %o A318110 while(n++, %o A318110 F1 = F0^2; F1 = F1 - deriv(F1,'t)/2 + deriv(F0,'t) + x*t; %o A318110 if (F1 == F0, break()); F0 = F1); %o A318110 concat([[0]], apply(Vecrev, Vec(F0))); %o A318110 }; %o A318110 concat(seq(10)) %o A318110 \\ test: y=Ser(apply(p->Polrev(p,'t), seq(101)), 'x); y == x*'t/(1-y) + deriv(y,'t) %Y A318110 Column 0 gives A262301. %Y A318110 Main diagonal gives A000108(n-1) for n>0. %Y A318110 Second diagonal gives A032443(n-1) for n>0. %K A318110 nonn,tabl %O A318110 0,4 %A A318110 _Gheorghe Coserea_, Sep 05 2018