This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A318120 #22 May 10 2021 07:40:51 %S A318120 1,1,1,4,11,51,162,876,3761,20782,109293,678569,4038388,27644436, %T A318120 186524145,1379760895,10323844183,82864869803,674798169662, %U A318120 5832742205056,51385856585637,474708148273586,4486977535287371,44152005855084345,444577220573083896 %N A318120 Number of set partitions of {1,...,n} with relatively prime block sizes. %H A318120 Alois P. Heinz, <a href="/A318120/b318120.txt">Table of n, a(n) for n = 0..576</a> %F A318120 a(n) = Sum_{|y| = n, GCD(y) = 1} n! / (Product_i y_i! * Product_i (y)_i!) where the sum is over all relatively prime integer partitions of n and (y)_i is the multiplicity of i in y. %e A318120 The a(4) = 11 set partitions: %e A318120 {{1},{2},{3},{4}} %e A318120 {{1},{2},{3,4}} %e A318120 {{1},{2,3},{4}} %e A318120 {{1},{2,4},{3}} %e A318120 {{1,2},{3},{4}} %e A318120 {{1,3},{2},{4}} %e A318120 {{1,4},{2},{3}} %e A318120 {{1},{2,3,4}} %e A318120 {{1,2,3},{4}} %e A318120 {{1,2,4},{3}} %e A318120 {{1,3,4},{2}} %p A318120 b:= proc(n, t) option remember; `if`(n=0, `if`(t<2, 1, 0), %p A318120 add(b(n-j, igcd(t, j))*binomial(n-1, j-1), j=1..n)) %p A318120 end: %p A318120 a:= n-> b(n, 0): %p A318120 seq(a(n), n=0..25); # _Alois P. Heinz_, Dec 30 2019 %t A318120 numSetPtnsOfType[ptn_]:=Total[ptn]!/Times@@Factorial/@ptn/Times@@Factorial/@Length/@Split[ptn]; %t A318120 Table[Total[numSetPtnsOfType/@Select[IntegerPartitions[n],GCD@@#==1&]],{n,10}] %t A318120 (* Second program: *) %t A318120 b[n_, t_] := b[n, t] = If[n == 0, If[t < 2, 1, 0], %t A318120 Sum[b[n - j, GCD[t, j]]*Binomial[n - 1, j - 1], {j, 1, n}]]; %t A318120 a[n_] := b[n, 0]; %t A318120 a /@ Range[0, 25] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A318120 a(n) >= A271426(n). %Y A318120 Cf. A000110, A000258, A000311, A000670, A000740, A000837, A005651, A005804, A008277, A124794, A319182, A320289. %K A318120 nonn %O A318120 0,4 %A A318120 _Gus Wiseman_, Dec 16 2018